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Lecture 11

• Conditional randomized experiment

• Unconfoundedness

• Simpson’s paradox

• Balancing score

• Estimators: outcome regression, IPW, matching

• Textbook Chapter 12

Topic: Conditional randomized experiment, 
unconfoundedness



Conditional randomized experiment
• Treatment assignment mechanism depends on pre-treatment covariates 𝑿!

• Example: stratified randomized experiment, proportion of treated units can be different in 
different strata

• Unconfoundedness property:   𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑿!
• Assignment mechanism does not depend any unobserved 𝑼 pretreatment confounders
• 𝑿! can either be continuous or discrete
• If 𝑿! is discrete or discretized à stratified randomized experiment

• Propensity score: 𝑒 𝑿! = 𝑃 𝑊! = 1| 𝑿! ∈ 0,1
• Overlap assumption: 𝑒 𝒙 ≠ 0 or 1 for any 𝒙 (otherwise we won’t have data to identify τ 𝒙 )
• In stratified randomized experiment: 𝑒 𝑿! = 𝑗 = 𝑃 𝑊! = 1| 𝑿!= 𝑗 = 𝑁"(𝑗)/𝑁(𝑗)

• Identify conditional average treatment effect under unconfoundedness
𝜏 𝒙 = 𝔼 𝑌! 1 − 𝑌! 0 𝑿!= 𝒙

= 𝔼 𝑌! 1 𝑿!= 𝒙,𝑊! = 1 − 𝔼 𝑌! 0 𝑿!= 𝒙,𝑊! = 0
= 𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 1 − 𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 0



Conditioning on confounded covariates

• (Population) average treatment effect
𝜏 = 𝔼(𝜏 𝑿! ) = 𝔼 𝔼 𝑌!#$% 𝑿! ,𝑊! = 1 − 𝔼 𝑌!#$% 𝑿! ,𝑊! = 0

= ∑𝒙 𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 1 − 𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 0 𝑃( 𝑿!= 𝒙)

• Conditioning on the confounding covariates 𝑿! is important
𝔼 𝑌!#$% 𝑊! = 1 − 𝔼 𝑌!#$% 𝑊! = 0

=<
𝒙

𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 1 𝑃 𝑿!= 𝒙 𝑊! = 1 −<
𝒙

𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 1 𝑃( 𝑿!= 𝒙|𝑊! = 0)

• If 𝑒 𝑿! = 𝑃 𝑊! = 1| 𝑿! ≡ 𝑐, then 𝑊! ⊥ 𝑿!⟹ 𝑃 𝑿!= 𝒙 𝑊! = 1 = 𝑃( 𝑿!= 𝒙|𝑊! = 0)

Shared weights

Different weights



Simpson’s paradox: kidney stone treatment
• Compare the success rates of two treatment of kidney stores
• Treatment A: open surgery; treatment B: small puctures

• What is the confounder here? Size of the stone
• Small stone: propensity score is '(

'()*(+
= 0.24

• Large stone: propensity score is *,-
*,-)'+

= 0.77
• True average causal effect: 83.2% − 78.2% ∶ (93%×0.51 + 73%×0.49) − (87%×
0.51 + 69%×0.49)

• We also mentioned Simpson’s paradox in Lecture 6 when choosing test statistics for Fisher’s 
exact p-value in stratified randomized experiment

𝑃( 𝑿!= 𝒙)

(87 + 270)/700=0.51

(263 + 80)/700=0.49



Simpson’s paradox: UC Berkeley gender bias
• In the early 1970s, the University of California, Berkeley was sued for gender 

discrimination over admission to graduate school.
• “Causal” effect of sex on application admission (data of Year 1973 admission)

• Confounding covariate: department

“𝑒 𝑿! ”
0.12

0.04

0.65

0.47

0.67

0.56

For data from departments 
A-F:
• Raw average admission  

rate between men and 
women: 
46% V.S. 30%

• After adjusting for 
department:
40% V.S. 44%

0.21

0.13

0.21

0.18

0.13

0.14

𝑃 𝑿!



Balancing score
• Under unconfoundedness, we can remove all biases in comparing treated and control units by 

conditioning on each level of 𝑿!
• Too few samples to compare at each level if too many variables in𝑿!

• Balancing score 𝑏(𝑿!) : lower-dimensional functions of 𝑿! that remove differences between 
treatment and control groups

𝑊! ⊥ 𝑿! | 𝑏(𝑿!)
• Balancing scores are not unique: any one-to-one mapping of a balancing score is a balancing 

score
• Propensity score 𝑒(𝑿!) is a balancing score

• We want to show that 𝑃 𝑊! = 1 𝑿! , 𝑒 𝑿! = 𝑃 𝑊! = 1 𝑒 𝑿!
• 𝑃 𝑊! = 1 𝑿! , 𝑒 𝑿! = 𝑃 𝑊! = 1 𝑿! = 𝑒 𝑿!
• By the law of total expectation
𝑃 𝑊! = 1 𝑒 𝑿! = 𝔼 𝑊! 𝑒 𝑿! = 𝔼 𝔼 𝑊! 𝑿! , 𝑒 𝑿! 𝑒 𝑿!
= 𝔼 𝔼 𝑊! 𝑿! 𝑒 𝑿! = 𝔼 𝑒 𝑿! 𝑒 𝑿! = 𝑒 𝑿!

• Propensity score the coarsest balancing score (Lemma 12.3): 𝑒 𝑿! is a function of any 𝑏(𝑿!)



Unconfoundedness with balancing score
• Why do we care about balancing score?

𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑿! ⟹𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑏(𝑿!)

• Given a vector of covariates that ensure unconfoundedness, adjustment for differences in 
propensity scores removes all biases associated with differences in the covariates

• For the propensity score 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑒(𝑿!)

• 𝑒 𝑿! can be reviewed as a summary score of the pre-treatment covariates

𝜏 = 𝔼 𝔼 𝑌!#$% 𝑒(𝑿!),𝑊! = 1 − 𝔼 𝑌!#$% 𝑒(𝑿!),𝑊! = 0

• The proof can be found on Page 267, Chapter 12.3



Estimate ATE under unconfoundedness

• Adjust for confounding variables when estimating the average treatment effect τ

• Three strategies
• Outcome regression

• Inverse probability weighting

• Matching

• We are not introducing new methods to estimate ATE for randomized experiments, we review 
the estimators we discuss in previous lectures from a different angle, to prepare us to perform 
causal inference in observation studies



Outcome regression estimator
• 𝜏 = 𝔼 𝔼 𝑌!#$% 𝑿! ,𝑊! = 1 − 𝔼 𝑌!#$% 𝑿! ,𝑊! = 0

• Define the conditional expectations 𝜇0(𝒙) = 𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 𝑤

• We can estimate the conditional expectations via a regression model and obtain P𝜇0(𝒙)
• Estimator for the ATE: Pτ123 =

4
5
∑!645 𝑊! 𝑌!#$% − P𝜇+ 𝑿! + (1 −𝑊!) P𝜇4( 𝑿!) −𝑌!#$%

• For example, if we assume a linear regression model 𝔼 𝑌!#$% 𝑿! ,𝑊! = 𝛼 + 𝜏𝑊! + 𝜷7𝑿!
• P𝜇0 𝒙 = P𝛼 + �̂�𝑤 + T𝜷7𝒙, Pτ123 = �̂�

• In practice, we can use any kinds of machine learning approaches (linear regressions, logistic 
regression, random forest, SVM, deep learning, …) to obtain P𝜇0(𝒙)

• Drawback of outcome regression approach: interpretability of the assumption
• a regression model on 𝔼 𝑌!#$% 𝑿!= 𝒙,𝑊! = 𝑤 is modeling the observed data
• Need to explain the underlying model assumptions on the potential outcomes (like what 

we did in Lecture 6) : a model for 𝔼 (𝑌! 0 , 𝑌! 1 ) 𝑿! ,𝑊!



Inverse probability weighting (IPW)
• What if we don’t want to put a model assumption on the observed (potential) outcome?

• If 𝑿! is unconfounded (𝑊! ⊥ 𝑿! ) and the model assumption is wrong, we may lose 
efficiency, but Pτ123 is likely still unbiased for 𝜏

• If 𝑿! are confounding covariates and the model assumption is wrong, Pτ123 is often be a 
biased estimator of 𝜏

• Weighting makes use the following properties to estimate 𝔼(𝑌! 1 ) and 𝔼(𝑌! 0 )

Proof:

Same derivation for the second equation.



Inverse probability weighting (IPW)
• What if we don’t want to put a model assumption on the observed (potential) outcome?

• If 𝑿! is unconfounded (𝑊! ⊥ 𝑿! ) and the model assumption is wrong, we may lose 
efficiency, but Pτ123 is likely still unbiased for 𝜏

• If 𝑿! are confounding covariates and the model assumption is wrong, Pτ123 is often be a 
biased estimator of 𝜏

• Weighting makes use the following properties to estimate 𝔼(𝑌! 1 ) and 𝔼(𝑌! 0 )

• We give a weight 𝜆! = 1/𝑃(𝑊! = 𝑤| 𝑿!) to each unit 𝑖, inversely proportional to the 
probability of being assigned to the group 𝑤

• Intuitively, unit that has a smaller 𝑒(𝑿!) has less chance to appear in the treatment group, 
so we should give it a higher weight 



Inverse probability weighting estimator

IVW estimator in stratified randomized experiment
• Propensity score in each strata is 𝑒 𝑿! = 𝑗 = 𝑃 𝑊! = 1| 𝑿!= 𝑗 = 5" 8

5 8

• Pτ9:; = 4
5
∑864< ∑!: >#68

5(8)
5"(8)

𝑊!𝑌!#$% − ∑!: >#68
5 8
5$ 8

(1 −𝑊!)𝑌!#$% = 4
5
∑864< 𝑁(𝑗) W𝑌"#$% − W𝑌A#$%

• Same as the estimator from Neyman’s repeated sampling approach

'τ%&'



Matching estimator
• In conditional randomized experiments, the IVW estimator do not have any further 

assumptions as the propensity scores 𝑒(𝑿!) are known.

• Instead of weighting based on 𝑒(𝑿!), we can also perform matching based on 𝑒(𝑿!)

• We can match treatment and control unit to form a pair if their propensity scores are very 
close to each other
• To assess the effect of job-training program on a thirty-ear-old women with two children 

under the age of six, with a high school education and four months of work experience in 
the past 12 months, we want to compare her with a thirty-ear-old women with two 
children under the age of six, with a high school education and four months of work 
experience in the past 12 months, who did not attend the program

• As 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑒(𝑿!), we can treat the matched data as from a paired randomized 
experiment


