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Lecture 12

• Observational study v.s. conditional randomized experiment

• Propensity score estimation

• Find the sets of possible confounding covariates

• Logistic regression

• Construct propensity score strata

• Assess covariates balancing

• Textbook Chapter 13

Topic: Propensity score estimation



Causal inference with observational data
• The core rationale is to conceptualize observational studies as conditional randomized 

experiments
• Analyze observational data as if treatment has been randomly assigned conditional on 

measured pre-treatment covariates 𝑿! (unconfoundedness: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑿! )

• Not all observational data can be conceptualized as a conditional randomized 
experiment!

-- Causal Inference: What If (Herman and Robins, 2020)



Observational study V.S. conditional randomized 
experiments

1.

2.

Conditional randomized experiment: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑿! is a fact as we 
control treatment assignment mechanism

Observational study: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑿! is an assumption. It
is always possible that this assumption is 
violated.

Conditional randomized experiment: 𝑒 𝑿! = 𝑃 𝑊! = 1| 𝑿! is known

Observational study: 𝑒 𝑿! = 𝑃 𝑊! = 1| 𝑿! needs to be 
estimated. Can introduce bias and suffer 
from estimation uncertainty



Need to evaluate identifiability assumptions carefully
• SUTVA

o Can any variable have a causal effect? Are there multiple versions of assignment? 
We need “sufficiently well-defined interventions”
Example: effect of sex, heart transplant by different techniques

o Interventions may not be well defined as the experiment is not really conducted

• Overlap
𝑒 𝑿! = 𝑃 𝑊! = 1| 𝑿! ∈ 0,1 or 𝑃 𝑊! = 𝑤| 𝑿!= 𝒙 > 0 for all 𝒙 and 𝑤
o Guaranteed by the nature of experiments
o Not guaranteed in observational studies

• 𝐿 only contains pre-treatment covariates

• Unconfoundedness: 𝑊! ⊥ 𝑌! 0 , 𝑌! 1 | 𝑿! is an untestable assumption!!



Estimate ATE with observation data

• We can still use outcome regression, IPW and matching estimators

• For IPW and matching estimators, as the propensity scores are unknown, we need to 
estimate the propensity scores from data first

• Once we estimate the propensity scores, we can replace the true propensity scores by 
their estimates in IPW or matching

• We need good estimates of the true propensity scores à not an easy task!

• We will also discuss other estimators that are more robust to a poor estimate of the 
propensity scores: blocking, trimming, doubly robust estimator



Propensity score estimation procedure
What is the criteria of a good estimated propensity score?
• Estimate 𝑒 𝑿! = 𝑃 𝑊! = 1| 𝑿! : a classification problem but not exactly a classification 

problem
• The goal is not simply minimizing the mean square error or classification error
• A good propensity score needs to achieve covariates balancing 𝑊! ⊥ 𝑿! | 𝑒̂(𝑿!)
• Even if 𝑒̂(𝑿!) is NOT an accurate estimate of the true 𝑒 𝑿! , as long as it achieves 

covariates balancing, 𝑒̂(𝑿!) is at least a balancing score which leads to 
unconfoundedness given 𝑒̂(𝑿!)

• Two stages to estimate the propensity score:
1) Use an initial specified model, such as logistic regression, to obtain 𝑒̂(𝑿!)
2) Check covariate balancing based on weights or matched sets defined by 𝑒̂(𝑿!)
3) We can iterate back and forth between the above two stages, each time refining the 

specified model

• During the whole process, we do not use the outcome data 𝑌!"#$



The Barbiturate exposure data
• We aim to evaluate the effect of prenatal exposure to barbiturates

• The data set contains information on N = 7,943 men and women born between 1959 and 
1961 in Copenhagen, Denmark. 

• 𝑁% = 745 men and women had been exposed in utero to substantial amounts of 
barbiturates due to maternal medical conditions. The comparison group consists of 𝑁& =
745 individuals from the same birth cohort who were not exposed in utero to 
barbiturates. 

• Outcome: barbiturate exposure on cognitive development in later years

• Treatment and control group can be systematically different: dataset contains 17 pre-
treatment covariates that can potentially relate to both cognitive development and 
likelihood of being exposed to barbiturates



The Barbiturate exposure data



Logistic regression: specify a model to obtain 𝑒̂(𝑿!)
• Logistic regression is an extension of linear regression to regression binary response  

variable 𝑊! on the predictors 5𝑿!
• Here, the predictors 5𝑿! is not necessary the original set of pre-treatment covariates 
𝑿!, we may drop some irrelevant covariates and add interaction terms

• Logistic regression assumes the model

𝜋! = 𝑃 𝑊! = 1|5𝑿! =
𝑒'(𝜷!*𝑿"

1 + 𝑒'(𝜷!*𝑿"
or equivalently, logit 𝑃 𝑊! = 1|5𝑿! = 𝛼 + 𝜷,5𝑿!

• It also assumes that 𝑊!~Bernoulli(𝜋!)

• The log-likelihood function of the above model is 

E
!-.

/
𝑊!(𝛼 + 𝜷,5𝑿!) − ln(1 + exp(𝛼 + 𝜷,5𝑿!))

• We maximize the likelihood to obtain estimates I𝛼 and J𝜷, and 𝑒̂ 𝑿! = 0#$%&𝜷
!(𝑿"

.(0#$%&𝜷!(𝑿"



Selecting the covariates and interactions
• We can not include all 17 covariates and their 17*18/2 = 162 quadratic and interactions 

terms in the logistic regression, and want to select a subset of these terms

Step 1: select a subset of basic covariates based on scientific understanding
• Basic covariates: covariates that are a priori viewed as important for explaining the 

assignment and plausibly related to some outcome measures
• In the Barbiturate exposure data

• lmotage: mother’s age, which is plausibly related to cognitive outcomes for the child 
• ses: mother’s socio-economic status, which is strongly related to the number of physician visits dur- ing

pregnancies and thus exposes the mother to greater risk of barbiturate prescriptions 
• sex: sex of the child, which may be associated with measures of cognitive outcomes 



Selecting the covariates and interactions

Step 2: add additional linear terms
• For each of the covariate not yet added, calculate the likelihood ratio statistics assessing 

the null hypothesis that the newly included covariate has a zero coefficient

• Add the covariate with the largest likelihood ratio statistics

• Stop if all likelihood ratio statistics of the remaining covariates are smaller to a cutoff (Say 
𝐶1 = 1)

• Similar to forward stepwise regression



Selecting the covariates and interactions



Selecting the covariates and interactions

Step 3: add additional quadratic and interaction terms
• Say we now have 𝐾1 linear covariates selected

• Quadratic and interaction terms are 𝐾1(𝐾1 + 1)/2
• Actual quadratic and interaction terms can be less as quadratic of binary covariate is 

itself

• Follow the same procedure in step 2 to add these terms sequentially 
• There can be a different cutoff for the likelihood ratio statistics 𝐶2 (say 𝐶2 = 2.71, 

corresponding to a 10% significance level)



Final model for the estimated propensity score



Construct propensity score strata
• At the second stage, we need to evaluate covariates balancing based on 𝑒̂ 𝑿!

𝑊! ⊥ 𝑿! | 𝑒̂(𝑿!)

• Ideally, we want to stratify samples into blocks so that each block has the exact same 
value of ,𝒆(𝑿𝒊), and assess whether 𝑊! ⊥ 𝑿! within each block.

• In practice, we need to coarsen 𝑒̂(𝑿!) into discrete values

• Define a set of boundary points: 0 = 𝑏3 < 𝑏. < ⋯ < 𝑏4 = 1
• Define block indicators

• We then assess: 𝑊! ⊥ 𝑿! | 𝐵! 1 ,⋯ , 𝐵! 𝐽 )



Find boundary points
How to find the boundary points 𝑏3 < 𝑏. < ⋯ < 𝑏4?
• Intuitively, we want to make sure that 𝑒̂(𝑿!) within each block / strata are close enough 

to each other
• Practically, we can check if 𝑊! ⊥ 𝑒̂(𝑿!) within each block
• We need estimated propensity score to be balanced within each strata, so that 

discretizing 𝑒̂(𝑿!) do not introduce an extra bias 

• Steps:
1. Preprocessing: remove units if their estimated propensity score is too large or too 

small
• Define                           , remove a control unit 𝑖 if 𝑒̂ 𝑿! < et

• Define                             , remove a treated unit 𝑖 if 𝑒̂ 𝑿! < 𝑒̅&

• Ensure that there are both enough treated and control units within each strata



Find boundary points
• Steps:

1. Preprocessing: remove units if their estimated propensity score is too large or too small
2. Sequential block splitting

• Start with a single block 𝐽 = 1 with 𝑏# = et and 𝑏$ = 𝑒̅%
• Define linearized propensity score 

6𝑙 𝑿! = ln
𝑒̂ 𝑿!

1 − 𝑒̂ 𝑿!
• For each of the current blocks, we assess whether we need to further split it into two

• For block 𝑗, need to evaluate whether 𝑊! ⊥ 6𝑙 𝑿! within the block
• Define the two-sample test statistics (assume equal variance of the two groups)

• Need to split Block 𝑗 into two blocks if 𝑡& > 𝑡'() = 1.96
• Define the two sub-blocks: find the median of 𝑒̂ 𝑿! within block 𝑗 as 𝑏&*

• Sub-block 1: all units with 𝑒̂ 𝑿! < 𝑏&*; sub-block 2: all units with 𝑒̂ 𝑿! ≥ 𝑏&*

3. Stopping rule: stop if every block either does not need to split or has a small enough size (too 
small to split)



Construct blocks for Barbiturate exposure data 
• Proprocessing: removed 2737 controls and 3 treated units 

Median 𝑒̂ 𝑿*
0.06

0.02
0.20

0.37
0.11

0.01

𝑡'() = 2

0.5



Construct blocks for Barbiturate exposure data 



Assess covariates balancing given the blocks
• Within each block, we test for the null hypothesis

• For each covariate 𝑘, construct t-statistics within block 𝑗
• Sample mean difference and its estimated squared standard error (assume equal variance) 

• Within-block t-statistics: 𝑧+ 𝑗 = ,-!
"(&)

0𝕍!
"(&)

• Overall t-statistics averaged across blocks 



Covariate balancing for Barbiturate exposure data 



Evaluate covariate balancing within the blocks

• We want to know if there are any imbalancing within any strata
• For 170 t-statsitics for 10 blocks and 17 covariates, plot QQ plot to assess whether these 

statistics follow 𝒩(0, 1)



What if we adjust for all covariates but no interactions or 
quadratic forms?
• In practice, what is often done is that we run a logistic regression on all available covariates 

without adding any interactions and quadratic terms
• This is equivalent to setting 𝐶1 = 0, 𝐶2 = ∞

• Within block statistics have heavier tailed than standard Gaussian




