Causal Inference Methods and Case Studies

STAT24630 Jingshu Wang

Lecture 14

Topic: Inverse probability weighting

- IPW
 - Using normalized weights
- Doubly robust estimator
- Bootstrap
- Textbook Chapters 17.8, 19.10.2

Motivation

- Matching methods can improve covariate balance
- Potential limitations of matching methods:
 - Inefficient: it may throw away many control units
 - Ineffective: it may not be able to balance covariates
 - Biased: not estimating the ATT if a lot of treated units are not matched
- Matching is a special case of weighting

$$\hat{\tau}_{\text{match}} = \frac{1}{N_t} \sum_{i=1}^{N} W_i \left(Y_i^{\text{obs}} - \frac{1}{|\mathcal{M}_i^c|} \sum_{i' \in \mathcal{M}_i^c} Y_{i'}^{\text{obs}} \right)$$
$$= \frac{1}{N_t} \sum_{i:W_i=1}^{N} Y_i^{\text{obs}} - \frac{1}{N_c} \sum_{i:W_i=1}^{N} \left(\frac{N_c}{N_t} \sum_{i':W_{i'}=1}^{N} \frac{1_{i \in \mathcal{M}_{i'}^c}}{|\mathcal{M}_{i'}^c|} \right) Y_i^{\text{obs}}$$

• Idea: weight each observation in the control group such that it looks like the treatment group

Inverse probability weighting (IPW)

• Weighting makes use the following properties to estimate $\mathbb{E}(Y_i(1))$ and $\mathbb{E}(Y_i(0))$

$$\mathbb{E}\left[\frac{Y_i^{\text{obs}} \cdot W_i}{e(X_i)}\right] = \mathbb{E}_{\text{sp}}\left[Y_i(1)\right], \text{ and } \mathbb{E}\left[\frac{Y_i^{\text{obs}} \cdot (1 - W_i)}{1 - e(X_i)}\right] = \mathbb{E}_{\text{sp}}\left[Y_i(0)\right].$$

• Intuitively, unit that has a smaller $e(X_i)$ has less chance to appear in the treatment group, so we should give it a higher weight (the less likely a subject is sampled, then the larger population it should represent)

$$\hat{\tau}_{\text{IPW}} = \frac{1}{N} \sum_{i=1}^{N} \frac{W_i \cdot Y_i^{\text{obs}}}{e(X_i)} - \frac{1}{N} \sum_{i=1}^{N} \frac{(1 - W_i) \cdot Y_i^{\text{obs}}}{1 - e(X_i)}$$

$$= \frac{1}{N} \sum_{i:W_i=1} \lambda_i \cdot Y_i^{\text{obs}} - \frac{1}{N} \sum_{i:W_i=0} \lambda_i \cdot Y_i^{\text{obs}},$$

where

$$\lambda_i = \frac{1}{e(X_i)^{W_i} \cdot (1 - e(X_i))^{1 - W_i}} = \begin{cases} 1/(1 - e(X_i)) & \text{if } W_i = 0, \\ 1/e(X_i) & \text{if } W_i = 1. \end{cases}$$

IPW for observational studies

- The propensity scores are estimated
- Estimate ATE and ATT
 - ATE

$$\widehat{ATE} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{W_i Y_i^{\text{obs}}}{\hat{e}(\boldsymbol{X}_i)} - \frac{(1 - W_i) Y_i^{\text{obs}}}{1 - \hat{e}(\boldsymbol{X}_i)} \right\}$$

• ATT

$$\widehat{\text{ATT}} = \frac{1}{N_t} \sum_{i=1}^{N} \left\{ W_i Y_i^{\text{obs}} - \frac{\widehat{e}(X_i)(1 - W_i) Y_i^{\text{obs}}}{1 - \widehat{e}(X_i)} \right\}$$

• For units that have identical propensity scores \rightarrow difference-in-means estimator

Normalizing the weights

- When use any weighting method (e.g. IPW), good practice is to normalize weights sum of the total of weights within one group should be 1
- Divide each unit's weight (ω_i) by the sum of all weights in that group $\omega_i / \sum_{i':W_{i'}=w} \omega_{i'}$ for w = 0,1, i.e. the Hajek estimator:
- The new ATE estimator:

$$\widehat{\text{ATE}} = \frac{\sum_{i=1}^{N} W_i Y_i^{\text{obs}} / \hat{e}(\boldsymbol{X}_i)}{\sum_{i=1}^{N} W_i / \hat{e}(\boldsymbol{X}_i)} - \frac{\sum_{i=1}^{N} (1 - W_i) Y_i^{\text{obs}} / (1 - \hat{e}(\boldsymbol{X}_i))}{\sum_{i=1}^{N} (1 - W_i) / (1 - \hat{e}(\boldsymbol{X}_i))}$$

• The new ATT estimator:

$$\widehat{\text{ATT}} = \frac{1}{N_t} \sum_{i=1}^N W_i Y_i^{\text{obs}} - \frac{\sum_{i=1}^N (1 - W_i) Y_i^{\text{obs}} \hat{e}(X_i) / (1 - \hat{e}(X_i))}{\sum_{i=1}^N (1 - W_i) \hat{e}(X_i) / (1 - \hat{e}(X_i))}$$

 Using normalized weights, we can reduce variance and lead to more stable estimate (Hirano, Imbens, Ridder, 2003)

IPW advantages v.s. disadvantages

- Advantages
 - Simple, with theoretical foundation
 - Global balance
 - Use all data
 - Can be extended to more complex settings

- Disadvantages
 - More sensitive to misspecification of propensity scores then matching
 - Estimated propensity scores near 0 or 1 can yield extreme weights

Example: Framingham Heart Study

- Goal: evaluate the effect of statins on health outcomes
- Patients: cross-sectional population from the offspring cohort with a visit 6 (1995-1998)
- Treatment: statin use at visit 6 vs. no statin use
- Outcomes: CV(cardiovascular) death, myocardial infarction (MI), stroke
- Confounders: sex, age, body mass index, diabetes, history of MI, history of PAD, history of stroke...
- Significant imbalance between treatment and control groups in covariates motivates IPW (or some form of propensity score adjustment)

Love plot for covariate balancing

Distribution of estimated propensity scores

- For treated units with $\hat{e}(X_i)$ close to 0, then can greatly influence the IPW estimator value
- Will discuss trimming in later lectures

Doubly robust estimator

- Outcome regression relies on a correctly specified model for the (potential) outcomes depending on X_i
- IPW / Matching relies on a correctly specified model for the propensity score
- Doubly robust estimator: provide a good estimate of the propensity score when either the outcome or the propensity score model is correct

• Define
$$f(1, \boldsymbol{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=1}}{\tilde{e}(\boldsymbol{X}_i)} - \frac{1_{W_i=1} - \tilde{e}(\boldsymbol{X}_i)}{\tilde{e}(\boldsymbol{X}_i)} \tilde{\mu}_1(\boldsymbol{X}_i)$$

$$f(0, \mathbf{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=0}}{1 - \tilde{e}(\mathbf{X}_i)} - \frac{1_{W_i=0} - (1 - \tilde{e}(\mathbf{X}_i))}{1 - \tilde{e}(\mathbf{X}_i)} \tilde{\mu}_0(\mathbf{X}_i)$$

- If we correctly specify the propensity score model, then $\tilde{e}(X_i) = e(X_i)$
- If we correctly specify the outcome model, then $\tilde{\mu}_w(X_i) = \mu_w(X_i)$

Doubly robust estimator

$$f(1, \boldsymbol{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=1}}{\tilde{e}(\boldsymbol{X}_i)} - \frac{1_{W_i=1} - \tilde{e}(\boldsymbol{X}_i)}{\tilde{e}(\boldsymbol{X}_i)} \tilde{\mu}_1(\boldsymbol{X}_i)$$

$$f(0, \boldsymbol{X}_{i}, Y_{i}^{\text{obs}}) = \frac{Y_{i}^{\text{obs}} 1_{W_{i}=0}}{1 - \tilde{e}(\boldsymbol{X}_{i})} - \frac{1_{W_{i}=0} - (1 - \tilde{e}(\boldsymbol{X}_{i}))}{1 - \tilde{e}(\boldsymbol{X}_{i})} \tilde{\mu}_{0}(\boldsymbol{X}_{i})$$

- $\tilde{e}(X_i)$, $\tilde{\mu}_w(X_i)$: our working models (model under our model assumption)
- $e(X_i)$, $\mu_w(X_i)$: true model that we don't know
- Double robust property

$$\mathbb{E}\left[f(1, \boldsymbol{X}_{i}, Y_{i}^{\text{obs}}) \mid \boldsymbol{X}_{i}\right] = \frac{\left(\mu_{1}(\boldsymbol{X}_{i}) - \tilde{\mu}_{1}(\boldsymbol{X}_{i})\right)\left(e(\boldsymbol{X}_{i}) - \tilde{e}(\boldsymbol{X}_{i})\right)}{\tilde{e}(\boldsymbol{X}_{i})} + \mu_{1}(\boldsymbol{X}_{i})$$
$$\mathbb{E}\left[f(0, \boldsymbol{X}_{i}, Y_{i}^{\text{obs}}) \mid \boldsymbol{X}_{i}\right] = \frac{\left(\mu_{0}(\boldsymbol{X}_{i}) - \tilde{\mu}_{0}(\boldsymbol{X}_{i})\right)\left(\tilde{e}(\boldsymbol{X}_{i}) - e(\boldsymbol{X}_{i})\right)}{1 - \tilde{e}(\boldsymbol{X}_{i})} + \mu_{0}(\boldsymbol{X}_{i})$$

• If either the outcome or propensity score model is correct, we have $\mathbb{E}\left(f(w, X_i, Y_i^{\text{obs}})\right) = \mathbb{E}(Y_i(w) | X_i)$ Doubly robust estimator

$$f(1, \boldsymbol{X}_i, Y_i^{\text{obs}}) = \frac{Y_i^{\text{obs}} 1_{W_i=1}}{\tilde{e}(\boldsymbol{X}_i)} - \frac{1_{W_i=1} - \tilde{e}(\boldsymbol{X}_i)}{\tilde{e}(\boldsymbol{X}_i)} \tilde{\mu}_1(\boldsymbol{X}_i)$$

IPW estimate of $\mathbb{E}(Y_i(1) | X_i)$

Adjust for bias if the propensity score model is incorrect (if PS model is correct, then this part has expectation 0)

An equivalent expression:

$$f(1, \mathbf{X}_i, Y_i^{\text{obs}}) = \tilde{\mu}_1(\mathbf{X}_i) + rac{1_{W_i=1}}{\tilde{e}(\mathbf{X}_i)} (Y_i(1) - \tilde{\mu}_1(\mathbf{X}_i))$$

Outcome regression estimate of $\mathbb{E}(Y_i(1) | X_i)$

Adjust for bias if the outcome regression model is incorrect (if PS model is correct, then this part has expectation 0)

The DR estimator:

$$\widehat{\tau} = \frac{1}{N} \sum_{i} \left[\frac{Y_i^{\text{obs}} \mathbb{1}_{W_i=1}}{\widehat{e}(\boldsymbol{X}_i)} - \frac{\mathbb{1}_{W_i=1} - \widehat{e}(\boldsymbol{X}_i)}{\widehat{e}(\boldsymbol{X}_i)} \widehat{\mu}_1(\boldsymbol{X}_i) \right] - \frac{1}{N} \sum_{i} \left[\frac{Y_i^{\text{obs}} \mathbb{1}_{W_i=0}}{\mathbb{1} - \widehat{e}(\boldsymbol{X}_i)} - \frac{\mathbb{1}_{W_i=0} - (1 - \widehat{e}(\boldsymbol{X}_i))}{1 - \widehat{e}(\boldsymbol{X}_i)} \widehat{\mu}_0(\boldsymbol{X}_i) \right]$$

A simulation study (Kang and Schafer. 2007. Statistical Science)

- The deteriorating performance of propensity score weighting methods when the model is misspecified
- Setup:
 - 4 covariates X_i^* : all are i.i.d. standard normal
 - Outcome model: linear model
 - Propensity score model: logistic model with linear predictors
 - Misspecification induced by measurement error:

•
$$X_{i1} = \exp(X_{i1}^*/2)$$

•
$$X_{i2} = \frac{X_{i2}^*}{(1 + \exp(X_{1i}^*) + 10)}$$

•
$$X_{i3} = (X_{i1}^* X_{i3}^* / 25 + 0.6)^3$$

- $X_{i4} = (X_{i1}^* + X_{i4}^* + 20)^2$
- Weighting estimators to be evaluated:
 - HT: IPW in the original form
 - IPW: IPW with normalized weights
 - Weighted least squares regression with covariates
 - Doubly-robust estimator

Results: if the propensity score model is correct

		Bias		RMSE				
Sample size	Estimator	logit	True	logit	True			
(1) Both models correct								
n = 200	HT	0.33	1.19	12.61	23.93			
	IPW	-0.13	-0.13	3.98	5.03			
	WLS	-0.04	-0.04	2.58	2.58			
	DR	-0.04	-0.04	2.58	2.58			
<i>n</i> = 1000	HT	0.01	-0.18	4.92	10.47			
	IPW	0.01	-0.05	1.75	2.22			
	WLS	0.01	0.01	1.14	1.14			
	DR	0.01	0.01	1.14	1.14			
(2) Propensity score model correct								
n = 200	HT	-0.05	-0.14	14.39	24.28			
	IPW	-0.13	-0.18	4.08	4.97			
	WLS	0.04	0.04	2.51	2.51			
	DR	0.04	0.04	2.51	2.51			
<i>n</i> = 1000	HT	-0.02	0.29	4.85	10.62			
	IPW	0.02	-0.03	1.75	2.27			
	WLS	0.04	0.04	1.14	1.14			
	DR	0.04	0.04	1.14	1.14			

- Use the true propensity score is worse than using the estimated propensity score when the propensity score model is correct
- Normalizing weights can help a lot in reducing the variance

Results: if the propensity score model is incorrect

		Bias		RMSE					
Sample size	Estimator	logit	True	logit	True				
(3) Outcome model correct									
n = 200	HT	24.25	-0.18	194.58	23.24				
	IPW	1.70	-0.26	9.75	4.93				
	WLS	-2.29	0.41	4.03	3.31				
	DR	-0.08	-0.10	2.67	2.58				
<i>n</i> = 1000	HT	41.14	-0.23	238.14	10.42				
	IPW	4.93	-0.02	11.44	2.21				
	WLS	-2.94	0.20	3.29	1.47				
	DR	0.02	0.01	1.89	1.13				
(4) Both models incorrect									
n = 200	HT	30.32	-0.38	266.30	23.86				
	IPW	1.93	-0.09	10.50	5.08				
	WLS	-2.13	0.55	3.87	3.29				
	DR	-7.46	0.37	50.30	3.74				
<i>n</i> = 1000	HT	101.47	0.01	2371.18	10.53				
	IPW	5.16	0.02	12.71	2.25				
	WLS	-2.95	0.37	3.30	1.47				
	DR	-48.66	0.08	1370.91	1.81				

- Double robust estimator perform better when outcome model is correct but propensity score model is wrong
- Double robust estimator can perform worse when both models are wrong (maybe we should also normalize the weights in DR)

Variance of IPW estimator

- Researchers have shown that using the estimated propensity score asymptotically results in smaller variance of the IPW estimator (Hirano, Imbens and Ridder, 2003)
- Closed-form sandwich estimator (M-estimator) of variance that takes into account of the uncertainty in estimating the propensity score (Lunceford and Davidian, 2004)
- Bootstrap: Resample units and refit PS and estimate the causal effects every time computationally intensive for large sample
- In the R example, we show an approximation of the variance ignoring the uncertainty in estimating the propensity score by regression (not too bad, as the estimation of propensity score only involves pre-treatment covariates)

- Nonparametric bootstrap:
 - Repeat B times: for each time b
 - sample *N* units with replacement (or resample the treated and controls separately)
 - Follow the whole procedure (starting from propensity score estimation to estimate the ATE/ATT using IPW)
 - Obtain an IPW estimator $\hat{\tau}_{IPW}^{(b)}$
 - Use the histogram of $\{\hat{\tau}_{IPW}^{(1)}, \cdots, \hat{\tau}_{IPW}^{(B)}\}$ as the approximated distribution of $\hat{\tau}_{IPW}$
 - The standard deviation of these estimates approximates the standard error of $\hat{ au}_{IPW}$