Causal Inference Methods and Case Studies

STAT24630 Jingshu Wang

Lecture 15

Topic: IPW, trimming, subclassification

- IPW
 - Connection with weighted least squares
- Trimming
- Subclassification
- IPW V.S. Subclassification
- Textbook chapters: Chapter 16.1, Chapter 17

Connection between IPW estimator and WLS

• Define inverse probability weights

$$\lambda_i = \frac{1}{e(X_i)^{W_i} \cdot (1 - e(X_i))^{1 - W_i}} = \begin{cases} 1/(1 - e(X_i)) & \text{if } W_i = 0, \\ 1/e(X_i) & \text{if } W_i = 1. \end{cases}$$

• Weighted least square with no covariate adjustments

$$(\hat{\alpha}, \hat{\tau}) = \min_{\alpha, \tau} \sum_{i=1}^{N} \lambda_i (Y_i^{\text{obs}} - \alpha - \tau W_i)^2$$

• Solution: $\hat{\alpha} = \frac{\sum_{i=1}^{N} (1 - W_i) \lambda_i Y_i^{\text{obs}}}{\sum_{i=1}^{N} (1 - W_i) \lambda_i} \text{ and } \hat{\alpha} + \hat{\tau} = \frac{\sum_{i=1}^{N} W_i \lambda_i Y_i^{\text{obs}}}{\sum_{i=1}^{N} W_i \lambda_i}$

- Solution is the same as IPW with normalizing weights
- If we ignore the uncertainty in estimating the propensity score, we can estimate the variance of $\hat{\tau}$ from Sandwich estimator for WLS
- We can also use WLS to adjust for other pre-treatment covariates

Trimming to improve overlapping

- We implicitly assume the overlap assumption: e(x) ≠ 0 or 1 for any x (otherwise we won't have data to identify τ(x))
- If the estimated propensity scores are close to 0 or 1 for some units, the overlap assumption might be violated at these values' X_i
- Trimming: remove units with very small or very large propensity scores
 - Remove all units with estimated propensity scores in the intervals $[0, \alpha_1]$ or $[1 \alpha_2, 1]$
 - $\alpha_1 = \alpha_2 = 0.05 \text{ or } 0.1 \text{ (ad-hoc)}$
 - Optimal α_1 and α_2 for trimming (Chapter 16)
 - You may refit the propensity score model after trimming
- Trimming also removes individuals with extremely large weights

Some extreme propensity scores, poor overlap of treatment and control.

Elze, Markus C., et al. "Comparison of propensity score methods and covariate adjustment: evaluation in 4 cardiovascular studies." Journal of the American College of Cardiology 69.3 (2017): 345-357.

Subclassification on the estimated PS

• Also called blocking or stratification

$$B_i(j) = \begin{cases} 1 & \text{if } b_{j-1} \leq \hat{e}(X_i) < b_j, \\ 0 & \text{otherwise,} \end{cases}$$

- Stratify individuals into J blocks based on the estimated propensity score
- How to find the boundary points? General guidelines
 - $\max_{j=1,\cdots,J} |b_j b_{j-1}|$ relatively small
 - There are not too few controls/treated units (say 1 or 2) in each strata/block
 - Covariate balancing within each strata is good

Sequential block splitting

- Introduced in Lecture 12
- Start with a single block J = 1 with $b_0 = \underline{e}_t$ and $b_1 = \overline{e}_c$
 - For each of the current blocks, we assess whether we need to further split it into two
 - For block *j*, calculate the two-sample test statistics (assume equal variance)

$$t_{\ell}(j) = \frac{\overline{\ell}_{t}(j) - \overline{\ell}_{c}(j)}{\sqrt{s_{\ell}^{2}(j) \cdot (1/N_{c}(j) + 1/N_{t}(j))}} \qquad s_{l}^{2}(j): \text{ pooled sample variance in block } j$$

- Need to split Block *j* into two blocks if $|t_j| > t_{max} = 1.96$
- Define the two sub-blocks: find the median of $\hat{e}(X_i)$ within block j as b'_i
 - Sub-block 1: all units with $\hat{e}(X_i) < b'_j$; sub-block 2: all units with $\hat{e}(X_i) \ge b'_j$
- Stop if
 - The block does not need to split $|t_j| \le t_{\max}$
 - or
 - has a small enough size $\min(N_c(j), N_t(j)) < N_{min,1} = 3$ or number of total units of a new stratum < K + 2 (K is the number of covariates possibly used in regression adjustment)

The Imbens-Rubin-Sacerdote lottery data

[Estimating the effect of unearned income on labor earnings, savings, and consumption: Evidence from a survey of lottery players. *American economic review*, 2001]

- Goal: Estimate magnitude of lottery prizes (unearned income) on economic behavior, including labor supply, consumption and savings
- Data collection:
 - "Winners": individuals who had played and won large sums of money in the Massachsetts lottery
 - "Losers": individuals who played the lottery and had won only small prizes
 - Constructing a comparison group of lottery players who did not win anything was not feasible as the Lottery Commission did not have contact information of such individuals
- Surveys are sent to these individuals with financial incentives
- We analyze a subset of $N_t = 259$ and $N_c = 237$ individuals with complete answers
- We use the model forward selection procedure to estimate the propensity scores

The Imbens-Rubin-Sacerdote lottery data

		Sent Responses		sponses	Response rates			
Mailing	Date	Winners	Nonwinners	Winners	Nonwinners	Winners	Nonwinners	Total
Pilot	July '95	50	50	17	25	0.34	0.50	0.42
Main	July '96	752	637	272	262	0.36	0.41	0.38
Follow-up (\$50 check) Follow-up (\$10 cash,	Sept. '96	248	248	39	40	0.16	0.16	0.16
\$40 check)	Sept. '96	49	49	11	12	0.22	0.24	0.23
Total		802	687	339	339	0.42	0.49	0.46

The Imbens-Rubin-Sacerdote lottery data

 Table 17.1. Normalized Differences in Covariates after Subclassification for the IRS Lottery

 Data

Variable	2	Full Sample	Trimmed Sample				
	One	Horvitz-Thompson	One	Two	Five	Horvitz-Thompsor	
	Block		Block	Blocks	s Blocks		
Year Won	-0.26	0.10	-0.06	-0.03	0.07	0.07	
# Tickets	0.91	0.10	0.51	0.17	0.07	-0.04	
Age	-0.50	-0.30	-0.09	-0.03	0.05	0.05	
Male	-0.19	0.09	-0.11	-0.10	-0.14	-0.13	
Education	-0.70	0.48	-0.51	-0.18	-0.10	-0.01	
Work Then	0.09	0.05	0.03	0.03	0.01	0.00	
Earn Year -6	-0.32	0.01	-0.18	-0.10	-0.03	0.06	
Earn Year -5	-0.28	0.01	-0.19	-0.07	-0.00	0.09	
Earn Year -4	-0.29	-0.01	-0.23	-0.09	-0.01	0.06	
Earn Year -3	-0.26	0.05	-0.18	-0.03	0.03	0.10	
Earn Year -2	-0.31	0.06	-0.19	-0.03	0.01	0.09	
Earn Year -1	-0.23	0.11	-0.17	-0.01	0.00	0.06	
Pos Earn Year -6	0.03	0.16	-0.00	-0.09	-0.09	-0.01	
Pos Earn Year -5	0.14	-0.14	0.10	0.01	-0.01	0.06	
Pos Earn Year -4	0.10	-0.19	0.06	-0.00	-0.01	0.03	
Pos Earn Year -3	0.13	-0.17	0.03	-0.04	-0.05	-0.00	
Pos Earn Year -2	0.14	-0.17	0.06	0.00	-0.04	0.01	
Pos Earn Year -1	0.10	0.17	-0.01	-0.04	-0.07	-0.01	

- Horvitz-Thompson: IPW with normalized weights
- One Block: all individuals
- Two Blocks / Five Blocks: subclassification (shown later)

[•] Trimming: results from optimal trimming only keep individuals whose $\hat{e}(X_i) \in [0.0891, 0.9109]$

The subclassification estimator

- Treat the data after subclassification as from a stratified randomized experiment
 - Neyman's repeated sampling approach
 - 1. Apply Neyman's analysis to each stratum / block

$$\hat{\tau}^{\text{dif}}(j) = \overline{Y}_{t}^{\text{obs}}(j) - \overline{Y}_{c}^{\text{obs}}(j), \text{ and } \hat{\mathbb{V}}^{\text{neyman}}(j) = \frac{s_{c}(j)^{2}}{N_{c}(j)} + \frac{s_{t}(j)^{2}}{N_{t}(j)}$$

2. Aggregate block-specific estimates and variances

$$\hat{\tau}^{\text{strat}} = \sum_{j} \frac{N(j)}{N} \hat{\tau}^{\text{dif}}(j), \qquad \widehat{\mathbb{V}}(\hat{\tau}^{\text{strat}}) = \sum_{j} \left(\frac{N(j)}{N}\right)^2 \widehat{\mathbb{V}}^{\text{neyman}}(j)$$

- Regression adjustment
 - 1. Run separate linear regressions within each stratum
 - 2. Average regression estimates across strata

$$\hat{\tau}^{\text{reg}} = \sum_{j} \frac{N(j)}{N} \hat{\tau}^{\text{reg}}(j), \qquad \widehat{\mathbb{V}}(\hat{\tau}^{\text{reg}}) = \sum_{j} \left(\frac{N(j)}{N}\right)^2 \widehat{\mathbb{V}}^{\text{reg}}(j)$$

Results on the lottery data

- Set K = 18, so each new stratum needs to have at least 20 total units
- Sequential splitting results in 5 blocks (p-scores are after refitting the pscore model)

Subclass	Min P-Score	Max P-Score	# Controls	# Treated	t-Stat
1	0.03	0.24	67	13	-0.1
2	0.24	0.32	32	8	0.9
3	0.32	0.44	24	17	1.7
4	0.44	0.69	34	47	2.0
5	0.69	0.99	15	66	1.6

 Table 17.4. Final Subclassification for the IRS Lottery Data

• Comparison with using 2 blocks

Subclass	Min P-Score	Max P-Score	# Controls	# Treated	t-Stat
1	0.03	0.44	123	38	2.8
2	0.44	0.99	49	113	3.8

Results on the lottery data

• Estimates within each block

Covariates	Blo (N =	ck 1 = 80)	Block 2 (N = 40)		Block 3 $(N = 41)$		Block 4 $(N = 81)$		Block 5 $(N = 81)$	
s <u></u>	Est	(<u>s.e.</u>)	Est	$(\widehat{s.e.})$	Est	$(\widehat{s.e.})$	Est	$(\widehat{s.e.})$	Est	$(\widehat{s.e.})$
No covariates										
Intercept	20.02	(2.25)	12.70	(2.67)	15.59	(3.07)	19.69	(2.76)	12.75	(3.26)
Treatment	-10.82	(4.70)	2.07	(5.10)	-1.17	(4.97)	-9.43	(3.23)	-2.89	(3.59)
Limited covariate	es									
Intercept	-20.04	(10.66)	4.47	(9.80)	-9.91	(10.87)	-8.65	(5.58)	-6.70	(5.21)
Treatment	-6.21	(4.01)	-6.51	(3.86)	-4.81	(3.87)	-5.88	(1.82)	-2.56	(2.39)
# Tickets	-3.48	(1.39)	1.17	(1.26)	1.85	(1.24)	-0.48	(0.34)	-0.20	(0.37)
Education	2.03	(0.87)	-0.37	(0.81)	0.48	(0.93)	1.17	(0.49)	0.59	(0.42)
Work Then	-2.66	(2.96)	-0.51	(1.84)	5.98	(4.35)	1.16	(2.18)	5.30	(2.52)
Earn Year -1	L 0.84	(0.06)	0.83	(0.09)	0.60	(0.15)	0.76	(0.07)	0.62	(0.10)

Results on the lottery data

• Estimated ATE

	Full Sample		Trimmed Sample Trimmed Sample			Trimmed Sample			
Covariates	1	1 Block		1 Block		2 Blocks		5 Blocks	
	Est	(<u>s.e.</u>)	Est	$(\widehat{s.e.})$	Est	$(\widehat{s.e.})$	Est	(<u>s. e.</u>)	
None	-6.2	(1.4)	-6.6	(1.7)	-6.0	(1.9)	-5.7	(2.0)	
# Tickets, Education,									
Work Then, Earn Year-2	1-2.8	(0.9)	-4.0	(1.1)	-5.6	(1.2)	-5.1	(1.2)	
All	-5.1	(1.0)	-5.3	(1.1)	-6.4	(1.1)	-5.7	(1.1)	

Subclassification V.S. IPW estimators

• Subclassification estimator can be treated as a weighting estimator

$$\hat{\tau}^{\text{strat}} = \frac{1}{N} \sum_{i=1}^{N} W_i \cdot Y_i^{\text{obs}} \cdot \lambda_i^{\text{strat}} - \frac{1}{N} \sum_{i=1}^{N} (1 - W_i) \cdot Y_i^{\text{obs}} \cdot \lambda_i^{\text{strat}},$$

where the weights λ_i^{strat} satisfy

$$\lambda_{i}^{\text{strat}} = \sum_{j=1}^{J} B_{i}(j) \cdot \left(\frac{1 - W_{i}}{N_{c}(j)/N(j)} + \frac{W_{i}}{N_{t}(j)/N(j)} \right)$$
$$= \begin{cases} \sum_{j=1}^{J} B_{i}(j) \cdot \frac{N(j)}{N_{c}(j)} & \text{if } W_{i} = 0, \\ \sum_{j=1}^{J} B_{i}(j) \cdot \frac{N(j)}{N_{t}(j)} & \text{if } W_{i} = 1. \end{cases}$$

• Instead of using the eps $\hat{e}(X_i)$ to obtain weights, subclassification estimator estimates the propensity scores as the block proportions (averaging $\hat{e}(X_i)$ within subclasses)

$$\tilde{e}(X_i) = \sum_{j=1}^J B_i(j) \cdot \frac{N_t(j)}{N(j)}$$

Subclassification V.S. IPW estimators

- If there are many blocks, then the dispersion within each stratum is limited, two estimators are similar
- The weights will be different only if, in at least some blocks, there is substantial variation in the propensity score, which is most likely to happen in blocks with propensity score values close to zero and one.
- Smoothing the weights by averaging them within blocks, as the subclassification estimator does, may remove some of the biases introduced by the estimation of propensity scores (avoids extreme weights).
- Subclassification is more robust to model mis-specification.
- Subclassification as a coarsening method is more ad-hoc.

Subclassification V.S. IPW estimators

• On the lottery data, summary statistics of the weights

	Full Sample	e	Trimmed Sample			
	Horvitz-Thompson	Subclass	Horvitz-Thompson	Subclass		
Minimum	0.92	1.06	1.00	1.19		
Maximum	79.79	17.71	18.18	6.15		
Standard deviation	4.20	2.63	1.69	1.35		

• Uncertainty and uncertainty on the lottery data

	Full Sampl	e	Trimmed Sample				
0	Horvitz-Thompson	Subclass	Horvitz-Thompson	Subclass			
Bias	4.34	2.68	1.29	0.30			
Variance	2.59^{2}	0.83^{2}	1.29^{2}	1.15^{2}			
Bias ² +Variance	5.06 ²	2.81^{2}	1.83 ²	1.19 ²			