Causal Inference Methods and Case Studies

STAT24630 Jingshu Wang

Topic: Classical randomized experiments

• A case study using Fisher's sharp null and exact p-values

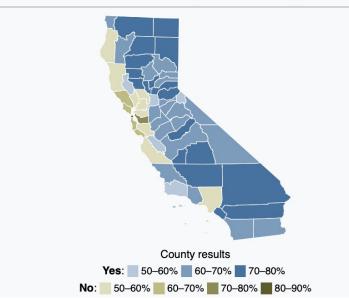
Case study: the California alphabet lottery

[Randomization inference with natural experiments: An analysis of ballot effects in the 2003 California recall election. *Journal of the American statistical association, 2006*]

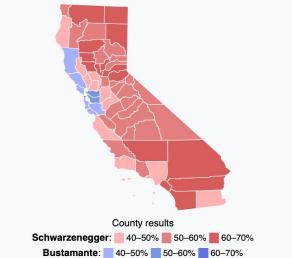
Problem background

- In the 2000 U.S. national election, George W. Bush became President by winning 537 more votes than Al Gore in Florida.
- This unusually close election result served as a reminder that the manner in which elections are administered can change outcomes.
- This paper studied the causal effect of the page placement of candidates in the 2003 California recall election
- dataset was collected by *The New York Times* in 2003 (not publicly available)

Case study: the California alphabet lottery


[Randomization inference with natural experiments: An analysis of ballot effects in the 2003 California recall election. *Journal of the American statistical association, 2006*]

Problem background


• Recall results

https://en.wikipedia.org/wiki /2003_California_gubernator ial_recall_election

Vot	te on recall	
	ecalled (removed) from the off f Governor?	ice
	Results	
Response	Votes	%
🗸 Yes	4,976,274	55.39%
🗶 No	4,007,783	44.61%
Valid votes	8,984,057	95.44%
Invalid or blank votes	429,431	4.56%
Total votes	9,413,488	100.00%
Registered voters/turnout	15,380,536	61.2%

lf	Davis is recalled, who	should replace him as g	overnor?
Turnout	61.20%		
Candidate	Arnold	Cruz Bustamante	Tom McClintock
	Schwarzenegger		
Party	Republican	Democratic	Republican
Popular vote	4,206,284	2,724,874	1,161,287

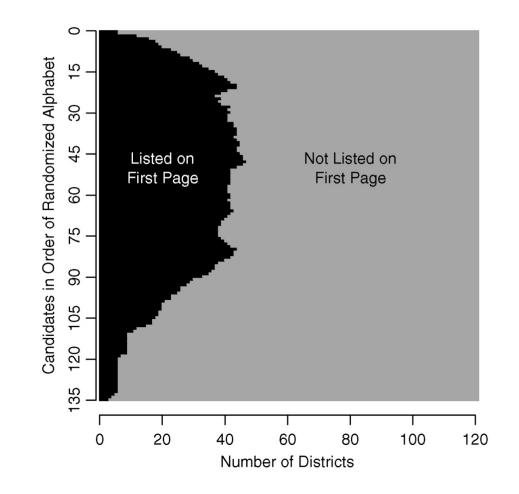
The randomization-rotation procedure

- Since 1975, California law has mandated that the Secretary of State draw a random alphabet for each election to determine the order of candidates for the first assembly district [California Election Code § 13112 (2003)].
- California law further requires that the candidate order be systematically rotated throughout the remaining assembly districts.

• The procedure

- 1. Randomize alphabet
- 2. Sort candidates by randomized alphabet
- 3. Rotate the candidate order from the first district

For the 2003 recall election, the actual randomized alphabet was


R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

- The ballot order in the first assembly district was determined, starting from Robinson, Roscoe, Ramirez, and so on and proceeding to Lewis and Leonard.
- This candidate order was then rotated throughout the remaining assembly districts.

The randomization-rotation procedure

Challenges analyzing data with the randomization procedure

- Randomization is not done on each candidate
- The alphabets are randomized, but the 80 assembly districts order are not randomized
- an unprecedented total of 135 candidates, from Hollywood actor Arnold
 Schwarzenegger to child television star Gary
 Coleman
- Each of the 58 counties uses a different ballot format with varying numbers of pages, leading to 121 county-district combinations of ballot formats
- interactions across candidates

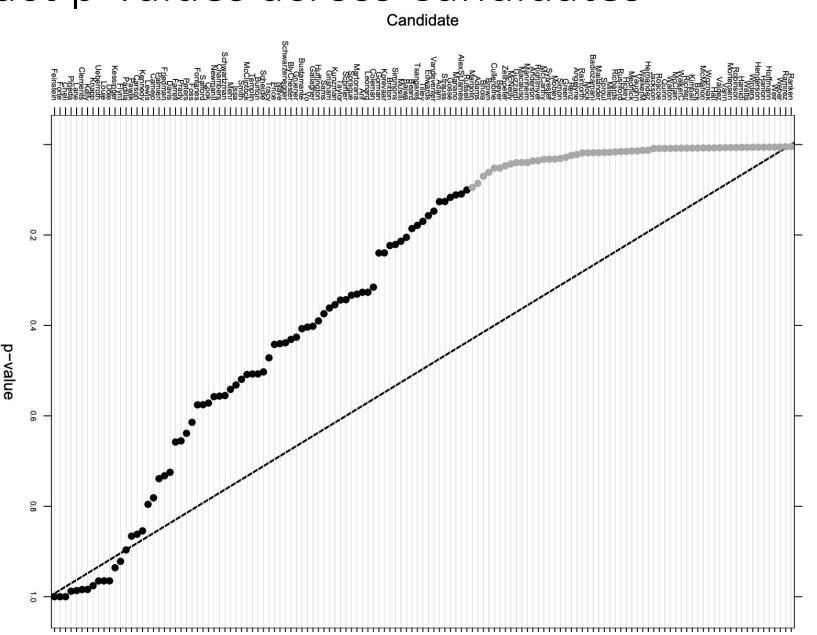
No complete randomization of page placement across candidates nor across districts

Set up the analysis framework

- Analyze the causal effect of page placement for each of the 135 candidates separately
- Each of 121 county-district combination is a **unit**: $Y_i(0)$ and $Y_i(1)$ for a district *i* and a particular candidate
- Treatment: $T_i = 1$ if candidate is placed on the first page, $T_i = 0$ otherwise
- Sharp null for a particular candidate: $H_0: Y_i(0) \equiv Y_i(1)$ for all $i = 1, \dots, 121$
- Test statistics:
 - Sample average treatment effect $W^{D}(\mathbf{T}) = \frac{\sum_{i=1}^{121} T_{i} y_{i}}{N_{1}} \frac{\sum_{i=1}^{121} (1 T_{i}) y_{i}}{N_{0}}$
 - Covariate-adjusted test statistics

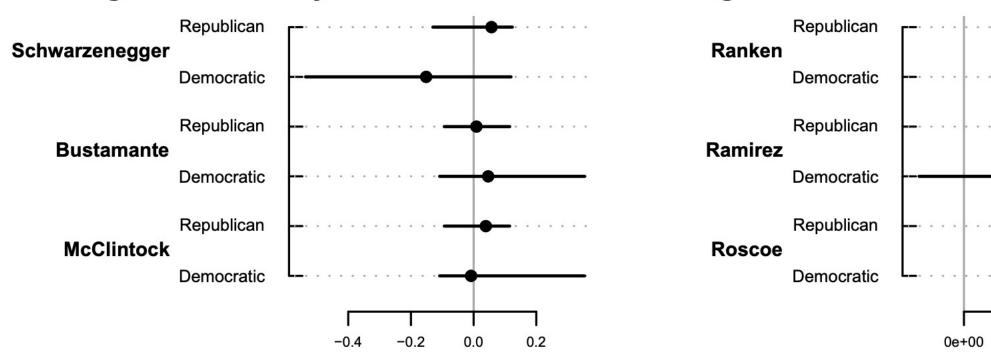
$$W^{\mathrm{L}}(\mathbf{T}) = (\mathbf{T}^{\top}\mathbf{M}\mathbf{T})^{-1}\mathbf{T}^{\top}\mathbf{M}\mathbf{y}, \qquad (4)$$

where $\mathbf{y} = (y_1, y_2, \dots, y_{121})$, $\mathbf{M} = \mathbf{I} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$, and \mathbf{X} is the matrix of the observed pretreatment covariates.


Set up the analysis framework

Implicit assumptions

- Assumption 1 (No interference among units) The potential outcomes of one unit do not depend on the treatment of other units.
 - potential vote shares of a candidate in one district do not depend on the same candidate's ballot placement in another district.
 - Voters usually do not see ballots of other districts and hence are unlikely to be affected by such ballots.
 - focus on the estimation of a separate causal effect for each candidate
- Assumption 2 (Known random assignment). Treatment is randomly assigned by a known mechanism. Formally, $p(T_i|Y_i(0), Y_i(1)) = p(T_i)$ is known for each *i*.
 - Assumes county page formats are independent of the randomized alphabet
 - Number of possible ballot pages is driven primarily by the type of voting technology, which is exogenous to the randomization


Distribution of Exact p-values across Candidates

- Authors computed the one-sided p-values
- Reference distribution obtained via Monte Carlo
- Candidates ranked based on their p-values
- If the sharp null is true, these p-values should all be uniformly distributed

Confidence intervals under the constant additive effect model

- For each candidate, we assume $Y_i(0) Y_i(1) \equiv \tau_0$ across all republican / democratic districts
- We construct confidence intervals by inverting the Fisher's randomization tests at a range of au_0 values

Page Effect on Major Candidates

Page Effect on Minor Candidates

5e-04

1e-03