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Lecture 5

Topic: Classical randomized experiments

* Neyman’s repeated sampling approach
* Motivation
* Variance calculation
* Cl and hypothesis testing

* Fisher VS Neyman

» Textbook chapter 6



Motivation

* Limitations of the Fisher’s randomization inference
* Do not allow heterogeneity of causal effects across individuals
* Do not have inference for the population

* Neyman’s approach
* Allow heterogeneity of causal effects across individuals
* Focus on estimation and inference for the average treatment effect: either just for the
N samples or for the whole population (PATE)
 Repeated sampling: sampling generated b drawing from both the population units, and
from the randomization distribution of assignment vector W
* Only provide asymptotic approximation for large N instead of the exact inference



Example: Duflo-Hanna-Ryan teacher-incentive
experiment

Conducted in rural India, designed to study the effect of financial incentives on teacher

performance
In total N = 107 single-teacher schools, 53 schools are randomly chosen and are given a salary

that’s tied to their attendance
One outcome: open (proportion of times the school is open during a random visit)

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N; = 54) Treated (Nt = 53)

Average (S.D.) Average (5.1} Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment open 0.58 (0.19) 0.80 (0.13) 0.00 1.00
pctpostwritten 0.47 (0.19) 0:52 (0.23) 0.05 0.92
written 0.92 (0.45) 1.09 (0.42) 0.07 2.22

written all 0.46 (0.32) 0.60 (0.39) 0.04 1.43




Example: Duflo-Hanna-Ryan teacher-incentive
experiment

Standard two-sample test: |
tdif = 0.80 — 0.58 = 0.22

0.192 0.132
s.e.= + ~ 0.032

54 53
95% CI:[0.22 —1.96 % 0.032,0.22 + 1.96 * 0.032]

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N; = 54) Treated (Nt = 53)

Average (S.D.) Average (5.1} Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment open 0.58 (0.19) 0.80 (0.13) 0.00 1.00

e This calculation ignores the randomization procedure of the treatment assignment
e Can we justify this standard difference-in-means analysis from the randomization perspective?



Estimation of the sample average treatment effect

* Causal estimand: SATE = 14, = % N {Y;(1) —Y;(0)} for the sampled N units

 Difference-in-means estimator:
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 Under complete randomization (random W) and treat the potential outcomes as fixed (fixed
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Calculate the variance of the estimator
Causal estimand: SATE = 74, = % N {Y;(1) — Y;(0)} for the sampled N units

i -in- i - ~dif ~obs TH0DS
Difference-in-means estimator: z_dlf _ Yt . Yc
Under complete randomization and fixed potential outcomes, we can also calculate the

variance of T4if (if you are interested in the proof see Appendix A of Chapter 6)
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Conservative approximation of the variance of the

estimator

Wy [290]¥(0), ¥ (1)] = 3£ 4 5 _ Set
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Estimate S and S/ by sample variance of observed outcomes

b vob b vob
52 Zi:Wi=O(YiO ¥ — YCO 5)2 2 Zi:Wi=1(Yio v — Yto S)Z
C

N, — 1 S = N, — 1
SZ is not identifiable
* No heterogeneity of treatment effects across individuals S =
* Ingeneral, S% > 0 though the exact value is unknown

Sample variance
of ¥;(0) and Y;(1)

Sample variance
of the unit-level
treatment effects



Conservative approximation of the variance of the
estimator
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where N { ~_ Sample variance
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* A conservative estimator of Vary, [‘fdif|Y(O), Y(1)]

Vo, [791)Y(0), Y(1)] < 5 + 2 = E,, [ St |Y(0) Y(l)]
NC Nt

Neyman’s estimator of the variance,
same as s.e. on slide 5



Estimation of the population average treatment effect

Causal estimand: PATE = 75, = IE(Yl-(l) — Yl-(O)) = [E(SATE) = E(7)
We assume that (Y;(0), Y;(1)) are jointly i.i.d samples from a super population with variance

o? and g?

We still use difference-in-means estimator:
wlCE —obs —o0bs
z_dlf - Yt e YC

4 is still unbiased for 7, [E(fdif) = E(Ey, [t4Y(0), Y(1)]) = E(tg) = Tsp

The variance of £4if (variance decomposition formula):
 Check Wikipedia if you do not know the variance decomposition formula
https://en.wikipedia.org/wiki/Law_of total variance

v(zdit) = E(Vy, [29Y(0), Y (D)]) + V(Ey [£9]Y(0), Y (1)])


https://en.wikipedia.org/wiki/Law_of_total_variance

Variance calculation for the population

.« Vi [ty (0), Y (D]

v(zdif) = E(Vy, [29Y(0), Y(D]) + V(Ey [£9]Y(0), Y (1)])
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e So VW, (£dif) =2 4% exactly the same as in two-sample testing
w N,

Nt
In two-sample testing, we assume that observed outcome Y; are i.i.d. in the treatment

group and Y; are i.i.d. in the control group
Under complete randomization, Y; = Y;(W;) are not i.i.d. even with the treatment/control

group because W; are negatively correlated across i



Construct confidence intervals for g5 or T,

We have the same estimator £9f and the same variance approximation of pdif

2 2
s S¢S

V(2dif) = =+ =

() =5+

no matter we are interested about SATE T¢g or PATE Tgy,

When N is large enough, we can approximate the distribution of pdif by a normal distribution

Then the 95% Cl for either T¢g OF Tgy, IS

[£9if — 1,96,/ V(£4dif) £dif — 1 96x./V(£dif)]

same as what we had earlier



ypothesis testing for T¢g or Tgy,

We have the same estimator £9f and the same variance approximation of pdif

2 2
s S Sf
V(zdif) = —+
() =5+
no matter we are interested about SATE T¢g or PATE Tgy,

When N is large enough, we can approximate the distribution of pdif by a normal distribution

When can test for the null hypothesis Hy: Tgg = 0 or Hy: Tsp = 0

:L\.dif

The t-statistics: t =
V(zdif

Under either Hy and when N is large, we have t approximately follows a N(0, 1) distribution
Two-sided p-value: 2(1 — ¢ (|t]))

i



Application to the Duflo-Hanna-Ryan data

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N. = 54) Treated (Nt = 53)

Average  (S.D.)  Average (S.D.) Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment open 0.58 (0.19) 0.80 (0.13) 0.00 1.00
pctpostwritten 0.47 (0.19) 0:52 (0.23) 0.05 0.92
written 0.92 (0.45) 1.09 042y V87 222
written_all 0.46 (0.32) 0.60 (0.39) 0.04 143

Confidence interval for each of the four outcomes:

—

T (s.e.) 95% C.1.
027 (0.03) (0.15,0.28)
0.05 (0.04) (—0.03,0.13)
0.17 (0.08) (0.00,0.34)

0.14 (0.07) (0.00,0.28)




Application to the Duflo-Hanna-Ryan data

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Variable Control (N. = 54) Treated (Nt = 53)

Average  (S.D.)  Average (S.D.) Min Max

Pre-treatment pctprewritten 0.19 (0.19) 0.16 (0.17) 0.00 0.67
Post-treatment open 0.58 (0.19) 0.80 (0.13) 0.00 1.00
pctpostwritten 0.47 (0.19) 0:52 (0.23) 0.05 0.92
written 0.92 (0.45) 1.09 042y V87 222
written_all 0.46 (0.32) 0.60 (0.39) 0.04 143

Analysis on two different subgroups: within each subgroup we still have complete randomization of assignments

Variable pctpre =0 pctprewritten > 0 Difference
(N = 40) (N = 67)

:  (.e) 95%CL & (s.e) 95%Cl EST (s.e) 95%C.L

open 023 (0.05) (0.140.32) 0.21 (0.04) (0.13,0.29) 0.02 (0.06) (—=0.10,0.14)
pctpost —0.004 (0.06) (—0.16,0.07) 0.11 (0.05) (0.01,0.21) —0.15 (0.08) (—0.31,0.00)
written

written 0.20 (0.10) (0.00,0.40) 0.18 (0.10) (—0.03,0.38) 0.03 (0.15) (—0.26,0.31)
written 0.04 (0.07) (—=0.10,0.19) 0.22 (0.09) (0.04,0.40) —0.18 (0.12) (—0.41,0.05)
a1




Fisher v.s. Neyman

Like Fisher, Neyman proposed randomization-based inference

Unlike Fisher,
* estimands are average treatment effects
* heterogenous treatment effects are allowed
e population as well as sample inference is possible
* asymptotic approximation is required for inference

Fisher’s approach can easily be applied to deal with any randomization mechanism in
an experiment, but it can be much harder for Neyman’s approach



