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Lecture 6

Topic: Regression for complete randomized experiment

Using regression with no covariates

Using regression with covariates adjustments

Using regression with covariates adjustments and interactions

The LRC-CPPT cholesterol data example

* Textbook Chapter 7



Linear regression and causality

Linear regression:
E(Y;1X;) = f(X;) = a + B"X;
Question:
 When can we interpret the coefficient(s) as causal effect?
 How can we do correct inference if we take into account the randomization procedure of
treatment assignments?

Benefit of using linear regression in randomized experiments
* Provides a straightforward and familiar way to incorporate covariates
* More accurate estimator if covariates are predictive of potential outcomes

Some critiques
* |In complete randomized experiments, covariates are not confounders
 Why do we want to assume a linear model if we don’t need to?

“Experiments should be analyzed as experiments, not as observational studies”
---- David A. Freedman, 2006



The LRC-CPPT cholesterol data

* An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels

e N = 337 patients are completely randomized

* Pre-treatment covariates: two cholesterol measurements before and after a suggestion of
low-cholesterol diet, both measurements taken prior to the random assignment

* Does chol?2 — chol1 reflect the average causal effect of suggestion? Not necessarily
« cholp = 0.25 chol1 + 0.75 chol2

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N, =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 4420
chol2 289.2 (24.1) 287.4 (21.4) 2240 435.0
cholp 291.2 (232) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256:5 (26.2) 167.0 427.0
chold —8.5 (10.8) —-334 (21:3) —113.3 295

comp 74.5 (21.0) 59.9 (24.4) 0 1010




The LRC-CPPT cholesterol data

* An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
e N = 337 patients are completely randomized
* Post-treatment outcomes:

« cholf: post-treatment average cholesterol level
« chold = cholf — cholp

 comp: compliance rate, the percentage of individuals follow the treatment assignment

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N, =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 4420
chol2 289.2 (24.1) 287.4 (21.4) 2240 435.0
cholp 291.2 (232) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0
chold —8.5 (10.8) —-334 (21:3) —113.3 295

comp 74.5 (21.0) 59.9 (24.4) 0 1010




The LRC-CPPT cholesterol data

» Can we evaluate the drug effect by simply look at whether chold is positive or negative?
* No! The before-after comparison is NOT necessarily causal
* Even for the control group, chold is significantly negative

* The patient’s post-treatment cholesterol should be highly correlated with his/her pre-
treatment cholesterol level
 How do we evaluate the causal effect after “adjusting for the pre-treatment cholesterol”?

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N =172) Treatment (Ny =165)
Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 442.0

chol2 289.2 (24.1) 287.4 (21.4) 224.0 435.0

cholp 291.2 (232) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0

chold —8.5 (10.8) —334 (21:3) —113.3 295

comp 74.5 (21.0) 59.9 (24.4) 0 101.0

What does
“adjust for”
exactly mean
here?



The LRC-CPPT cholesterol data

A bit explanation about compliance

* |f we compare between control and treatment group, we are evaluating the causal effect of
“being assigned”, not the causal effect of actually taking the drug

 Compliance lower in the treatment group possibly due to the side effect of the drug

e Can we just throw away individuals who do not follow the treatment and estimate the causal
effect of taking the drug based on the rest individuals? No

* Will discuss more about compliance in later lectures

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 2470 4420
chol2 289.2 (24.1) 287.4 (21.4) 2240 435.0
cholp 291.2 (232) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 2565 (26.2) 167.0 427.0
chold —-8.5 (10.8) —-334 21:3) —113.3 295

comp 74.5 (21.0) 59.9 (24.4) 0 101.0




Linear regression with no covariates

e Causal model on the potential outcomes

Y(W)=a+Tt,w+e =a+mw+gw)

where E(¢;) = 0and g;(w) = ¢ + (z; — D)w

Assume that there is a super-population and the potential outcomes are random
Individual-level causal effect t; = Y;(1) — Y;(0) is also treated as random (as
individuals are randomly sampled), and are allowed to be heterogenous

Define PATE: T = [E(t;) = [E(Yl-(l) — Yi(O))

a = IE(YL-(O)) and [E(el-(w)) =0

If the treatment is binary (w = 0,1), then the above model essentially has no
assumption on Y;(0) and Y;(1)

If the treatment is continuous, the model assumes a linear but heterogenous causal
effect on each individual

How to estimate T from observed data?
When does the above model imply the linear regression model on observed data?

YOS = q + TW; + ¢



Linear regression with no covariates
Y(wW)=a+Ttw+¢e =a+tw+g(w)

We assume the following identification conditions
 Randomization of the treatment:
(Y(0),Y(1) L w
e Satisfied in complete randomized experiments

b _ —
* Then, [E(Yl (W)) = IE(YiO W = W) = & + TW Regression model for the observed Y%

* So this implies a regression model Y.°°S = o + tW; + ¢; and g; = &;(W;)
* Inthe regression model, we treat assignment vectors as fixed

 Random sampling of the units
* (&(0),&;(1)) are independent across i
* This implies that ¢; in the linear regression model are independent as W; are treated as
fixed (the regression model is conditional on ;)



Least square estimator
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Homoscedastic error assumption

Homoscedastic error assumption: V(g;(0)) = V(g;(1)) = 02 = V(Yl-ObSIWi)

e QLS estimates of the variance is

L | &= 2
A2 A2 b y70b
Hiw =Nz 0.8 =y o (B - )
i=1

i=1

where the estimated residual is &; = Y;’bs —¥ ;’bs, and the predicted value f/i"bs is

pobs _ a%® if W; = 0,
’ aot + 7o if w; = 1.

e Then from OLS, estimate of the variance of £°!
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Heteroscedastic errors

* If we don’t want to assume V(g;(0)) = V(g;(1)), then the homoscedastic error
assumption fails

- Robust variance estimation of 7°!S allowing any heterogeneity of W(Yi0b5|Wi) across i

N
vhctcro — Zz 18 (W W)
o\ 2
(S (wi-w)°)
e & =YOPS — & — tW; = Y°PS — 7°PS are the residuals

* If we replace &7 by 6§|W, then we get back the OLS variance estimation of £°'

 This is also called the Sandwich estimator that is robust to the violation of the
homoscedastic noise assumption in linear regression

e AsTisestimated from YiObS, E(£%) < V(g)

e When sample size N is small, ¥1€tero wi|| underestimate the true variance of £°!s



Heteroscedastic errors

* The HC2 adjustment 2
Vhetero _ Iiv=1(§i/\/ 1- hii)z(Wi — VT/)
HC?2 - — >
(2 wi - w)*)

* h;; is the leverage of unit i in the linear regression

2 2

. . Ty S S
* If W;is binary. Vietere = —NC + —Nt
c t

e This is the same variance estimator as from Neyman’s approach, or our two-
sample testing approach



Linear regression with covariates adjustment

To summarize the logic

 We build a (linear) model on the potential outcomes

 This model implies a linear regression model on the observed outcome if
(Y(0),Y(1) LW

* The coefficient on W; in the linear regression model is the average causal effect
(PATE)

 The linear regression model treat W as fixed so it works for any randomization
assignment mechanism that satisfy (Y(0),Y(1)) L W

 Noise in the linear regression model are independent as long as potential outcomes
are independent across units

 The OLS estimator estimator is always unbiased
* We can apply standard linear regression inference results if we assume
V(e (0)) = V(g (1)

* IfV(g(0)) # V(g (1)), we need to use the robust variance estimator



Linear regression with covariates adjustment

* Regress Y;(0) on the pre-treatment covariates X;
YwW)=a+tw+ B X, +& =a+w+ BTX; + g(w)
where E(¢;|X;) =0and g;(w) = & + (t; — T)w

e We assume that E(Y;(0)| X;) = a + BT X;
Individual-level causal effect is 7; = Y;(1) — Y;(0)

We can allow for heterogeneous causal effect but need E(t; — 7| X;) =0
(individual causal effects are independent from the pre-treatment covariates)
The above implies that E(g;(w)| X;) =0

The above also implies that E(Y;(w)| X;) = a + tw + BT X;

When does the above model imply the linear regression model on observed data?
YiObS =a + TWi + ﬁTXi + &



Linear regression with covariates adjustment
Yy(w) =a+ww+ BTX; + g(w)

We assume the following identification conditions
e (Conditional) randomization of the treatment:
(Y(0),Y(1) LW |X
Always satisfied in randomized experiments
E(Y;(W)|X; = x) = E(Y°*5|W; =w,X; = x) = a +tw + BTX;

Regression model for the observed ¥;°PS

So this implies a regression model Y°%S = o + tW; + BTX; + ¢; and & = &;(W;)
Both X; and W; are treated as fixed

 Random sampling of the units
* (&(0),&;(1)) are independent across i
* This implies that g; = £;(W;) are independent across units



OLS with covariates adjustment

N
2
(Aols ~o0ls ,Bols) - arg(gnrl%z (YiobS —oa—17-W;,— Xi,B)
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* The estimator fOIS is unbiased for the causal estimand T

* Even if the model is incorrect (either the violation of E(Y;(0)| X;) = a + BT X, or 7 =
E(t;| X; = x) ), t° still converges to the PATE E(t;) under complete randomization

Efficiency gain from regression
* |f the modelis correct, we have
205y BV (DX} BV (O] X)) _ ot of
V(£°5) ~ + — +—
N; N, N N;
* If X; is predictive of the (potential) outcomes, we have a more accurate estimator

e If the linear model is incorrect, the efficiency might be lost
(Freedman 2008, Adv. Appl. Math.)




Estimate of the variance of £°! with covariates
adjustment

* Assume homoscedastic error assumption:
V(g (0)) = V(g (1) = a2 = V(Y*|w;, X;)

We can follow standard linear regression inference and estimate variance of 0ls 54

homo 1 va:l (Yl-ObS _ 4ols _ zols _ ﬁols)
. NV —-1-dim(X))) W-(1-W)

* The robust variance estimator (Sandwich estimator) without assuming
homoscedasticity
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Linear regression with covariates adjustment
and interactions

What if the assumption T = 7(x) = E(7;| X; = Xx) constant across levels of X; is incorrect?
s YW =a+tw+B'X;+¢ =a+1w+ BTX; + ¢;(w) where E(¢]|X;) = 0 and
gw)=¢ + (t; —)w

T is still the population average treatment effect
Then E(s;(W)| X;) =y (X;— X)w

The above also implies that E(Y;(w)| X;) = a + tw + BTX; + YT ( X;— X)w

When does the above model imply the linear regression model with interactions on
observed data?
YoPS = a + Wi + BTX; + v (X;— X)W, + ¢;
e Same assumptions as before (slide 15)
 We can still use least square estimators



Results on the LRC-CPPT cholesterol data

* We estimate the PATE for both the post-treatment cholesterol level cholf and compliance

A considerable reduction of the variance of £°!S for cholf when we add the pre-treatment
cholesterol levels in the regression

Our goal is always estimating PATE even after “covariates adjustment”

In randomized experiments satisfying (Y(0),Y (1)) L W, adjusting for covariates or not,
our estimate of PATE is always valid, we only change the efficiency of our estimate

Covariates Effect of Assignment to Treatment on
Post-Cholesterol Level Compliance
7 (s.e.) 7 (s.e.)
No covariates —26.22 (3.93) —14.64 (3.51)
cholp —25.01 (2.60) —14.68 (331)
chioll, ehol2 —25.02 (2.59) —14.95 (3.50)

choll, chol2, interacted with W —25.04 (2.56) ~14.94 (3.49)




Results on the LRC-CPPT cholesterol data

* We estimate the PATE for both the post-treatment cholesterol level cholf and compliance

A considerable reduction of the variance of £°!S for cholf when we add the pre-treatment
cholesterol levels in the regression

Our goal is always estimating PATE even after “covariates adjustment”

In randomized experiments satisfying (Y(0),Y (1)) L W, adjusting for covariates or not,
our estimate of PATE is always valid, we only change the efficiency of our estimate

Which variables are “significantly” contributing to the variance reduction of £°!S for cholf ?

Covariates Model for Levels
Est (s.e.)
Assignment —25.04 (2.56)
Intercept —3.28 (12.05)
choll 0.98 (0.04)
chol2-choll 0.61 (0.08)
choll x Assignment —0.22 (0.09)
(chol2-choll) x Assignment 0.07 (0.14)

R-squared 0.63




ex

Ny do we use linear regression in randomized

veriments?

e Covariate adjustment can be used to improve efficiency in randomized
experiments

* Under various experimental designs, linear regression models are useful
methods for this purpose

 Randomization of treatment assignment protects researchers from
misspecification
* independence between treatment and covariates
* linear regression estimators are often consistent even when the
model is incorrect



