Causal Inference Methods and Case Studies

STAT24630 Jingshu Wang

Lecture 6

Topic: Regression for complete randomized experiment

- Using regression with no covariates
- Using regression with covariates adjustments
- Using regression with covariates adjustments and interactions
- The LRC-CPPT cholesterol data example
- Textbook Chapter 7

Linear regression and causality

• Linear regression:

$$\mathbb{E}(Y_i|\boldsymbol{X}_i) = f(\boldsymbol{X}_i) = \alpha + \boldsymbol{\beta}^T \boldsymbol{X}_i$$

- Question:
 - When can we interpret the coefficient(s) as causal effect?
 - How can we do correct inference if we take into account the randomization procedure of treatment assignments?
- Benefit of using linear regression in randomized experiments
 - Provides a straightforward and familiar way to incorporate covariates
 - More accurate estimator if covariates are predictive of potential outcomes
- Some critiques
 - In complete randomized experiments, covariates are not confounders
 - Why do we want to assume a linear model if we don't need to?

"Experiments should be analyzed as experiments, not as observational studies"

- An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
- N = 337 patients are completely randomized
- **Pre-treatment covariates:** two cholesterol measurements before and after a suggestion of low-cholesterol diet, both measurements taken prior to the random assignment
 - Does chol2 chol1 reflect the average causal effect of suggestion? Not necessarily
 - cholp = 0.25 chol1 + 0.75 chol2

	Variable	Contro	$N_{\rm c} = 172$	Treatment ($N_t = 165$)			
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	chol2	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

 Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

- An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
- N = 337 patients are completely randomized
- Post-treatment outcomes:
 - cholf: post-treatment average cholesterol level
 - chold = cholf cholp
 - COMP: compliance rate, the percentage of individuals follow the treatment assignment

	Variable	Contro	ol ($N_{\rm c} = 172$)	Treatment ($N_t = 165$)			
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	chol2	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

 Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

- Can we evaluate the drug effect by simply look at whether chold is positive or negative?
 - No! The before-after comparison is NOT necessarily causal
 - Even for the control group, chold is significantly negative
- The patient's post-treatment cholesterol should be highly correlated with his/her pretreatment cholesterol level
- How do we evaluate the causal effect after "adjusting for the pre-treatment cholesterol"?

	Variable	Control ($N_c = 172$)		Treatment ($N_t = 165$)			
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	chol2	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

 Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

What does "adjust for" exactly mean here?

A bit explanation about compliance

- If we compare between control and treatment group, we are evaluating the causal effect of "being assigned", not the causal effect of actually taking the drug
- Compliance lower in the treatment group possibly due to the side effect of the drug
- Can we just throw away individuals who do not follow the treatment and estimate the causal effect of taking the drug based on the rest individuals? No
- Will discuss more about compliance in later lectures

	Variable	Control ($N_c = 172$)		Treatment ($N_t = 165$)			
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	chol2	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

 Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Linear regression with no covariates

• Causal model on the potential outcomes

$$Y_i(w) = \alpha + \tau_i w + \varepsilon_i^* = \alpha + \tau w + \varepsilon_i(w)$$

where $\mathbb{E}(\varepsilon_i^*) = 0$ and $\varepsilon_i(w) = \varepsilon_i^* + (\tau_i - \tau)w$

- Assume that there is a super-population and the potential outcomes are random
- Individual-level causal effect $\tau_i = Y_i(1) Y_i(0)$ is also treated as random (as individuals are randomly sampled), and are allowed to be heterogenous
- Define PATE: $\tau = \mathbb{E}(\tau_i) = \mathbb{E}(Y_i(1) Y_i(0))$
- $\alpha = \mathbb{E}(Y_i(0))$ and $\mathbb{E}(\varepsilon_i(w)) = 0$
- If the treatment is binary (w = 0,1), then the above model essentially has no assumption on $Y_i(0)$ and $Y_i(1)$
- If the treatment is continuous, the model assumes a linear but heterogenous causal effect on each individual
- How to estimate τ from observed data?
- When does the above model imply the linear regression model on observed data?

$$Y_i^{\rm obs} = \alpha + \tau W_i + \varepsilon_i$$

Linear regression with no covariates

$$Y_i(w) = \alpha + \tau_i w + \varepsilon_i^* = \alpha + \tau w + \varepsilon_i(w)$$

We assume the following identification conditions

• Randomization of the treatment:

 $(\boldsymbol{Y}(0), \boldsymbol{Y}(1)) \perp \boldsymbol{W}$

- Satisfied in complete randomized experiments
- Then, $\mathbb{E}(Y_i(w)) = \mathbb{E}(Y_i^{\text{obs}}|W_i = w) = \alpha + \tau w$ Regression model for the observed Y_i^{obs}
- So this implies a regression model $Y_i^{obs} = \alpha + \tau W_i + \varepsilon_i$ and $\varepsilon_i = \varepsilon_i(W_i)$
- In the regression model, we treat assignment vectors as fixed
- Random sampling of the units
 - $(\varepsilon_i(0), \varepsilon_i(1))$ are independent across i
 - This implies that ε_i in the linear regression model are independent as W_i are treated as fixed (the regression model is conditional on W_i)

Least square estimator

$$(\hat{\tau}^{\text{ols}}, \hat{\alpha}^{\text{ols}}) = \arg\min_{\tau, \alpha} \sum_{i=1}^{N} \left(Y_i^{\text{obs}} - \alpha - \tau \cdot W_i \right)^2,$$

with solutions

$$\hat{\tau}^{\text{ols}} = \frac{\sum_{i=1}^{N} \left(W_i - \overline{W} \right) \cdot (Y_i^{\text{obs}} - \overline{Y}^{\text{obs}})}{\sum_{i=1}^{N} \left(W_i - \overline{W} \right)^2}, \quad \text{and} \quad \hat{\alpha}^{\text{ols}} = \overline{Y}^{\text{obs}} - \hat{\tau}^{\text{ols}} \cdot \overline{W},$$

where

$$\overline{Y}^{\text{obs}} = \frac{1}{N} \sum_{i=1}^{N} Y_i^{\text{obs}}$$
 and $\overline{W} = \frac{1}{N} \sum_{i=1}^{N} W_i = \frac{N_t}{N}$.

Simple linear algebra shows that

$$\hat{\tau}^{\mathrm{ols}} = \overline{Y}_{\mathrm{t}}^{\mathrm{obs}} - \overline{Y}_{\mathrm{c}}^{\mathrm{obs}} = \hat{\tau}^{\mathrm{dif}}$$

- $\hat{\tau}^{\mathrm{ols}}$ is unbiased for the estimation of au
- How to estimate the variance of $\hat{\tau}^{ols}$?

Homoscedastic error assumption

Homoscedastic error assumption: $\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1)) = \sigma^2 = \mathbb{V}(Y_i^{\text{obs}}|W_i)$

• OLS estimates of the variance is

$$\hat{\sigma}_{Y|W}^2 = \frac{1}{N-2} \sum_{i=1}^{N} \hat{\varepsilon}_i^2 = \frac{1}{N-2} \sum_{i=1}^{N} \left(Y_i^{\text{obs}} - \hat{Y}_i^{\text{obs}} \right)^2,$$

where the estimated residual is $\hat{\varepsilon}_i = Y_i^{obs} - \hat{Y}_i^{obs}$, and the predicted value \hat{Y}_i^{obs} is

$$\hat{Y}_i^{\text{obs}} = \begin{cases} \hat{\alpha}^{\text{ols}} & \text{if } W_i = 0, \\ \hat{\alpha}^{\text{ols}} + \hat{\tau}^{\text{ols}} & \text{if } W_i = 1. \end{cases}$$

• Then from OLS, estimate of the variance of $\hat{\tau}^{ols}$

$$\hat{\mathbb{V}}^{\text{homosk}} = \frac{\hat{\sigma}_{Y|W}^2}{\sum_{i=1}^N \left(W_i - \overline{W}\right)^2}$$

Heteroscedastic errors

- If we don't want to assume $\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1))$, then the homoscedastic error assumption fails
- Robust variance estimation of $\hat{\tau}^{\text{ols}}$ allowing any heterogeneity of $\mathbb{V}(Y_i^{\text{obs}}|W_i)$ across *i*

$$\hat{\mathbb{V}}^{\text{hetero}} = \frac{\sum_{i=1}^{N} \hat{\varepsilon}_{i}^{2} \cdot \left(W_{i} - \overline{W}\right)^{2}}{\left(\sum_{i=1}^{N} \left(W_{i} - \overline{W}\right)^{2}\right)^{2}}$$

•
$$\hat{\varepsilon}_i = Y_i^{\text{obs}} - \hat{\alpha} - \hat{\tau}W_i = Y_i^{\text{obs}} - \hat{Y}_i^{\text{obs}}$$
 are the residuals

- If we replace $\hat{\varepsilon}_i^2$ by $\hat{\sigma}_{Y|W}^2$, then we get back the OLS variance estimation of $\hat{\tau}^{ols}$
- This is also called the Sandwich estimator that is robust to the violation of the homoscedastic noise assumption in linear regression
- As $\hat{\tau}$ is estimated from Y_i^{obs} , $\mathbb{E}(\hat{\varepsilon}_i^2) < \mathbb{V}(\varepsilon_i)$
- When sample size N is small, $\widehat{\mathbb{V}}^{hetero}$ will underestimate the true variance of $\hat{\tau}^{ols}$

Heteroscedastic errors

• The HC2 adjustment

$$\widehat{\mathbb{V}}_{HC2}^{\text{hetero}} = \frac{\sum_{i=1}^{N} (\widehat{\varepsilon}_i / \sqrt{1 - h_{ii}})^2 (W_i - \overline{W})^2}{\left(\sum_{i=1}^{N} (W_i - \overline{W})^2\right)^2}$$

• h_{ii} is the leverage of unit *i* in the linear regression

• If
$$W_i$$
 is binary. $\widehat{\mathbb{V}}_{HC2}^{\text{hetero}} = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}$

• This is the same variance estimator as from Neyman's approach, or our twosample testing approach

Linear regression with covariates adjustment

To summarize the logic

- We build a (linear) model on the potential outcomes
- This model implies a linear regression model on the observed outcome if $(Y(0), Y(1)) \perp W$
- The coefficient on W_i in the linear regression model is the average causal effect (PATE)
- The linear regression model treat W as fixed so it works for any randomization assignment mechanism that satisfy $(Y(0), Y(1)) \perp W$
- Noise in the linear regression model are independent as long as potential outcomes are independent across units
- For statistical inference
 - The OLS estimator estimator is always unbiased
 - We can apply standard linear regression inference results if we assume $\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1))$
 - If $\mathbb{V}(\varepsilon_i(0)) \neq \mathbb{V}(\varepsilon_i(1))$, we need to use the robust variance estimator

Linear regression with covariates adjustment

• Regress $Y_i(0)$ on the pre-treatment covariates X_i

 $Y_i(w) = \alpha + \tau_i w + \boldsymbol{\beta}^T \boldsymbol{X}_i + \varepsilon_i^* = \alpha + \tau w + \boldsymbol{\beta}^T \boldsymbol{X}_i + \varepsilon_i(w)$ where $\mathbb{E}(\varepsilon_i^* | \boldsymbol{X}_i) = 0$ and $\varepsilon_i(w) = \varepsilon_i^* + (\tau_i - \tau)w$

- We assume that $\mathbb{E}(Y_i(0) | X_i) = \alpha + \beta^T X_i$
- Individual-level causal effect is $\tau_i = Y_i(1) Y_i(0)$
- Assume CATE $\tau(\mathbf{x}) = \mathbb{E}(\tau_i | \mathbf{X}_i = \mathbf{x}) \equiv \tau = \text{PATE constant across levels of } \mathbf{X}_i$
- We can allow for heterogeneous causal effect but need $\mathbb{E}(\tau_i \tau \mid X_i) = 0$ (individual causal effects are independent from the pre-treatment covariates)
- The above implies that $\mathbb{E}(\varepsilon_i(w) | X_i) = 0$
- The above also implies that $\mathbb{E}(Y_i(w) | X_i) = \alpha + \tau w + \beta^T X_i$

When does the above model imply the linear regression model on observed data? $Y_i^{\text{obs}} = \alpha + \tau W_i + \beta^T X_i + \varepsilon_i$ Linear regression with covariates adjustment

 $Y_i(w) = \alpha + \tau w + \boldsymbol{\beta}^T \boldsymbol{X}_i + \varepsilon_i(w)$

We assume the following identification conditions

• (Conditional) randomization of the treatment:

 $(Y(0), Y(1)) \perp W \mid X$

- Always satisfied in randomized experiments
- $\mathbb{E}(Y_i(w)|\mathbf{X}_i = \mathbf{x}) = \mathbb{E}(Y_i^{\text{obs}}|W_i = w, \mathbf{X}_i = \mathbf{x}) = \alpha + \tau w + \boldsymbol{\beta}^T \mathbf{X}_i$

Regression model for the observed Y_i^{obs}

- So this implies a regression model $Y_i^{obs} = \alpha + \tau W_i + \beta^T X_i + \varepsilon_i$ and $\varepsilon_i = \varepsilon_i(W_i)$
- Both X_i and W_i are treated as fixed
- Random sampling of the units
 - $(\varepsilon_i(0), \varepsilon_i(1))$ are independent across i
 - This implies that $\varepsilon_i = \varepsilon_i(W_i)$ are independent across units

OLS with covariates adjustment

$$(\hat{\alpha}^{\text{ols}}, \hat{\tau}^{\text{ols}}, \hat{\beta}^{\text{ols}}) = \arg\min_{\alpha, \tau, \beta} \sum_{i=1}^{N} \left(Y_i^{\text{obs}} - \alpha - \tau \cdot W_i - X_i \beta \right)^2$$

- The estimator $\hat{\tau}^{ols}$ is unbiased for the causal estimand τ
- Even if the model is incorrect (either the violation of $\mathbb{E}(Y_i(0) | X_i) = \alpha + \beta^T X_i$ or $\tau \equiv \mathbb{E}(\tau_i | X_i = x)$), $\hat{\tau}^{\text{ols}}$ still converges to the PATE $\mathbb{E}(\tau_i)$ under complete randomization

Efficiency gain from regression

• If the model is correct, we have

$$\mathbb{V}(\hat{\tau}^{\text{ols}}) \approx \frac{\mathbb{E}\{\mathbb{V}(Y_i(1) \mid \boldsymbol{X}_i)\}}{N_t} + \frac{\mathbb{E}\{\mathbb{V}(Y_i(0) \mid \boldsymbol{X}_i)\}}{N_c} \leq \frac{\sigma_c^2}{N_c} + \frac{\sigma_t^2}{N_t}$$

- If X_i is predictive of the (potential) outcomes, we have a more accurate estimator
- If the linear model is incorrect, the efficiency might be lost (Freedman 2008, Adv. Appl. Math.)

Estimate of the variance of $\hat{\tau}^{ols}$ with covariates adjustment

• Assume homoscedastic error assumption:

$$\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1)) = \sigma^2 = \mathbb{V}(Y_i^{\text{obs}} | W_i, X_i)$$

We can follow standard linear regression inference and estimate variance of $\hat{\tau}^{
m ols}$ as

$$\hat{\mathbb{V}}_{\text{sp}}^{\text{homo}} = \frac{1}{N\left(N-1-\dim(X_i)\right)} \cdot \frac{\sum_{i=1}^{N} \left(Y_i^{\text{obs}} - \hat{\alpha}^{\text{ols}} - \hat{\tau}^{\text{ols}} - X_i \hat{\beta}^{\text{ols}}\right)^2}{\overline{W} \cdot (1-\overline{W})}$$

• The robust variance estimator (Sandwich estimator) without assuming homoscedasticity

$$\hat{\mathbb{V}}_{sp}^{\text{hetero}} = \frac{1}{N\left(N-1-\dim(X_i)\right)}$$
$$\cdot \frac{\sum_{i=1}^{N}\left(W_i - \overline{W}\right)^2 \cdot \left(Y_i^{\text{obs}} - \hat{\alpha}^{\text{ols}} - \hat{\tau}^{\text{ols}} - X_i\hat{\beta}^{\text{ols}}\right)^2}{\left(\overline{W} \cdot (1-\overline{W})\right)^2}$$

Linear regression with covariates adjustment and interactions

What if the assumption $\tau \equiv \tau(\mathbf{x}) = \mathbb{E}(\tau_i | \mathbf{X}_i = \mathbf{x})$ constant across levels of \mathbf{X}_i is incorrect?

- $Y_i(w) = \alpha + \tau_i w + \boldsymbol{\beta}^T \boldsymbol{X}_i + \varepsilon_i^* = \alpha + \tau w + \boldsymbol{\beta}^T \boldsymbol{X}_i + \varepsilon_i(w)$ where $\mathbb{E}(\varepsilon_i^* | \boldsymbol{X}_i) = 0$ and $\varepsilon_i(w) = \varepsilon_i^* + (\tau_i \tau)w$
- Assume CATE $\tau(\mathbf{x}) = \mathbb{E}(\tau_i | \mathbf{X}_i = \mathbf{x}) = \tau + \mathbf{\gamma}^T (\mathbf{x} \overline{\mathbf{X}})$
- τ is still the population average treatment effect
- Then $\mathbb{E}(\varepsilon_i(w) | X_i) = \gamma^T (X_i \overline{X}) w$
- The above also implies that $\mathbb{E}(Y_i(w) | X_i) = \alpha + \tau w + \beta^T X_i + \gamma^T (X_i \overline{X}) w$
- When does the above model imply the linear regression model with interactions on observed data?

 $Y_i^{\text{obs}} = \alpha + \tau W_i + \boldsymbol{\beta}^T \boldsymbol{X}_i + \boldsymbol{\gamma}^T (\boldsymbol{X}_i - \boldsymbol{\overline{X}}) W_i + \varepsilon_i$

- Same assumptions as before (slide 15)
- We can still use least square estimators

Results on the LRC-CPPT cholesterol data

- We estimate the PATE for both the post-treatment cholesterol level cholf and compliance
 - A considerable reduction of the variance of $\hat{\tau}^{ols}$ for cholf when we add the pre-treatment cholesterol levels in the regression
 - Our goal is always estimating PATE even after "covariates adjustment"
 - In randomized experiments satisfying $(Y(0), Y(1)) \perp W$, adjusting for covariates or not, our estimate of PATE is always valid, we only change the efficiency of our estimate

Covariates	Effect of Assignment to Treatment on					
	Post-Chole	Compliance				
	$\hat{ au}$	(s. e.)	$\hat{ au}$	(s. e.)		
No covariates	-26.22	(3.93)	-14.64	(3.51)		
cholp	-25.01	(2.60)	-14.68	(3.51)		
chol1, chol2	-25.02	(2.59)	-14.95	(3.50)		
chol1, chol2, interacted with W	-25.04	(2.56)	-14.94	(3.49)		

Results on the LRC-CPPT cholesterol data

- We estimate the PATE for both the post-treatment cholesterol level cholf and compliance
 - A considerable reduction of the variance of $\hat{\tau}^{ols}$ for cholf when we add the pre-treatment cholesterol levels in the regression
 - Our goal is always estimating PATE even after "covariates adjustment"
 - In randomized experiments satisfying $(Y(0), Y(1)) \perp W$, adjusting for covariates or not, our estimate of PATE is always valid, we only change the efficiency of our estimate
 - Which variables are "significantly" contributing to the variance reduction of $\hat{\tau}^{ols}$ for cholf ?

Covariates	Model for Levels			
	Est	(s. e.)		
Assignment	-25.04	(2.56)		
Intercept	-3.28	(12.05)		
chol1	0.98	(0.04)		
chol2-chol1	0.61	(0.08)		
chol1 × Assignment	-0.22	(0.09)		
(chol2-chol1) × Assignment	0.07	(0.14)		
R-squared	0	.63		

Why do we use linear regression in randomized experiments?

- Covariate adjustment can be used to improve efficiency in randomized experiments
- Under various experimental designs, linear regression models are useful methods for this purpose
- Randomization of treatment assignment protects researchers from misspecification
 - independence between treatment and covariates
 - linear regression estimators are often consistent even when the model is incorrect