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Lecture 6

• Using regression with no covariates

• Using regression with covariates adjustments

• Using regression with covariates adjustments and interactions

• The LRC-CPPT cholesterol data example

• Textbook Chapter 7

Topic: Regression for complete randomized experiment



Linear regression and causality
• Linear regression: 

𝔼 𝑌! 𝑿! = 𝑓 𝑿! = 𝛼 + 𝜷"𝑿!
• Question: 

• When can we interpret the coefficient(s) as causal effect?
• How can we do correct inference if we take into account the randomization procedure of 

treatment assignments?

• Benefit of using linear regression in randomized experiments
• Provides a straightforward and familiar way to incorporate covariates
• More accurate estimator if covariates are predictive of potential outcomes

• Some critiques
• In complete randomized experiments, covariates are not confounders
• Why do we want to assume a linear model if we don’t need to?

“Experiments should be analyzed as experiments, not as observational studies”
---- David A. Freedman, 2006



The LRC-CPPT cholesterol data
• An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
• 𝑁 = 337 patients are completely randomized
• Pre-treatment covariates: two cholesterol measurements before and after a suggestion of 

low-cholesterol diet, both measurements taken prior to the random assignment
• Does chol2 – chol1 reflect the average causal effect of suggestion? Not necessarily
• cholp = 0.25 chol1 + 0.75 chol2



The LRC-CPPT cholesterol data
• An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
• 𝑁 = 337 patients are completely randomized
• Post-treatment outcomes:

• cholf: post-treatment average cholesterol level
• chold = cholf – cholp
• comp: compliance rate, the percentage of individuals follow the treatment assignment



The LRC-CPPT cholesterol data
• Can we evaluate the drug effect by simply look at whether chold is positive or negative?

• No! The before-after comparison is NOT necessarily causal
• Even for the control group, chold is significantly negative

• The patient’s post-treatment cholesterol should be highly correlated with his/her pre-
treatment cholesterol level

• How do we evaluate the causal effect after “adjusting for the pre-treatment cholesterol”?

What does 
“adjust for” 
exactly mean 
here?



The LRC-CPPT cholesterol data
A bit explanation about compliance
• If we compare between control and treatment group, we are evaluating the causal effect of 

“being assigned”, not the causal effect of actually taking the drug
• Compliance lower in the treatment group possibly due to the side effect of the drug
• Can we just throw away individuals who do not follow the treatment and estimate the causal 

effect of taking the drug based on the rest individuals? No
• Will discuss more about compliance in later lectures



Linear regression with no covariates
• Causal model on the potential outcomes

𝑌! 𝑤 = 𝛼 + 𝜏!𝑤 + 𝜀!∗ = 𝛼 + 𝜏𝑤 + 𝜀! 𝑤
where 𝔼 𝜀!∗ = 0 and 𝜀! 𝑤 = 𝜀!∗ + 𝜏! − 𝜏 𝑤
• Assume that there is a super-population and the potential outcomes are random
• Individual-level causal effect 𝜏! = 𝑌! 1 − 𝑌! 0 is also treated as random (as 

individuals are randomly sampled), and are allowed to be heterogenous
• Define PATE: 𝜏 = 𝔼 𝜏! = 𝔼 𝑌! 1 − 𝑌! 0
• 𝛼 = 𝔼 𝑌! 0 and 𝔼 𝜀! 𝑤 = 0
• If the treatment is binary (𝑤 = 0,1), then the above model essentially has no 

assumption on 𝑌! 0 and 𝑌! 1
• If the treatment is continuous, the model assumes a linear but heterogenous causal 

effect on each individual

• How to estimate 𝜏 from observed data?
• When does the above model imply the linear regression model on observed data?

𝑌!$%& = 𝛼 + 𝜏𝑊! + 𝜀!



Linear regression with no covariates
𝑌! 𝑤 = 𝛼 + 𝜏!𝑤 + 𝜀!∗ = 𝛼 + 𝜏𝑤 + 𝜀! 𝑤

We assume the following identification conditions
• Randomization of the treatment: 

(𝒀 0 , 𝒀 1 ) ⊥ 𝑾
• Satisfied in complete randomized experiments
• Then, 𝔼 𝑌! 𝑤 = 𝔼 𝑌!$%&|𝑊! = 𝑤 = 𝛼 + 𝜏𝑤

• So this implies a regression model 𝑌!$%& = 𝛼 + 𝜏𝑊! + 𝜀! and 𝜀! = 𝜀! 𝑊!
• In the regression model, we treat assignment vectors as fixed

• Random sampling of the units 
• (𝜀! 0 , 𝜀! 1 ) are independent across 𝑖
• This implies that 𝜀! in the linear regression model are independent as 𝑊! are treated as 

fixed (the regression model is conditional on 𝑊!)

Regression model for the observed 𝑌!"#$



Least square estimator

Simple linear algebra shows that

• 𝜏̂"#$ is unbiased for the estimation of 𝜏
• How to estimate the variance of 𝜏̂!"#?



Homoscedastic error assumption

Homoscedastic error assumption: 𝕍 𝜀!(0) = 𝕍 𝜀!(1) = 𝜎' = 𝕍 𝑌!$%&|𝑊!

• OLS estimates of the variance is

• Then from OLS, estimate of the variance of 𝜏̂!"#



Heteroscedastic errors
• If we don’t want to assume 𝕍 𝜀!(0) = 𝕍 𝜀!(1) , then the homoscedastic error 

assumption fails
• Robust variance estimation of 𝜏̂"#$ allowing any heterogeneity of 𝕍 𝑌!$%&|𝑊! across 𝑖

• ̂𝜀! = 𝑌!$%& − ;𝛼 − 𝜏̂𝑊! = 𝑌!$%& − <𝑌!$%& are the residuals
• If we replace ̂𝜀!' by ;𝜎(|*' , then we get back the OLS variance estimation of 𝜏̂!"#

• This is also called the Sandwich estimator that is robust to the violation of the 
homoscedastic noise assumption in linear regression

• As 𝜏̂ is estimated from 𝑌!$%&, 𝔼( ̂𝜀!
') < 𝕍(𝜀!)

• When sample size 𝑁 is small, >𝕍+,-,.$ will underestimate the true variance of 𝜏̂!"#



Heteroscedastic errors

• The HC2 adjustment

• ℎ%% is the leverage of unit 𝑖 in the linear regression

• If 𝑊% is binary. >𝕍/0'+,-,.$ = 1%&

2%
+ 1'

&

2'

• This is the same variance estimator as from Neyman’s approach, or our two-
sample testing approach

&𝕍()*+,-,." =
∑!/01 ( ̂𝜀!/ 1 − ℎ!!)* 𝑊! − 3𝑊

*

∑!/01 𝑊! − 3𝑊 * *



Linear regression with covariates adjustment
To summarize the logic

• We build a (linear) model on the potential outcomes
• This model implies a linear regression model on the observed outcome if 
(𝒀 0 , 𝒀 1 ) ⊥ 𝑾

• The coefficient on 𝑊! in the linear regression model is the average causal effect 
(PATE)

• The linear regression model treat 𝑾 as fixed so it works for any randomization 
assignment mechanism that satisfy (𝒀 0 , 𝒀 1 ) ⊥ 𝑾

• Noise in the linear regression model are independent as long as potential outcomes 
are independent across units

• For statistical inference
• The OLS estimator estimator is always unbiased
• We can apply standard linear regression inference results if we assume 
𝕍 𝜀!(0) = 𝕍 𝜀!(1)

• If 𝕍 𝜀!(0) ≠ 𝕍 𝜀!(1) , we need to use the robust variance estimator 



Linear regression with covariates adjustment

• Regress 𝑌! 0 on the pre-treatment covariates 𝑿!
𝑌! 𝑤 = 𝛼 + 𝜏!𝑤 + 𝜷"𝑿! + 𝜀!∗ = 𝛼 + 𝜏𝑤 + 𝜷"𝑿! + 𝜀! 𝑤

where 𝔼 𝜀!∗|𝑿! = 0 and 𝜀! 𝑤 = 𝜀!∗ + 𝜏! − 𝜏 𝑤

• We assume that 𝔼 𝑌! 0 | 𝑿! = 𝛼 + 𝜷"𝑿!
• Individual-level causal effect is 𝜏! = 𝑌! 1 − 𝑌! 0
• Assume CATE  𝜏 𝒙 = 𝔼 𝜏! 𝑿!= 𝒙 ≡ 𝜏 = PATE constant across levels of 𝑿!
• We can allow for heterogeneous causal effect but need 𝔼 𝜏! − 𝜏 | 𝑿! = 0

(individual causal effects are independent from the pre-treatment covariates)
• The above implies that 𝔼 𝜀! 𝑤 | 𝑿! = 0

• The above also implies that 𝔼 𝑌! 𝑤 | 𝑿! = 𝛼 + 𝜏𝑤 + 𝜷"𝑿!

When does the above model imply the linear regression model on observed data?
𝑌!$%& = 𝛼 + 𝜏𝑊! + 𝜷"𝑿! + 𝜀!



Linear regression with covariates adjustment
𝑌! 𝑤 = 𝛼 + 𝜏𝑤 + 𝜷"𝑿! + 𝜀! 𝑤

We assume the following identification conditions
• (Conditional) randomization of the treatment: 

𝒀 0 , 𝒀 1 ⊥ 𝑾 | 𝑿
• Always satisfied in randomized experiments
• 𝔼 𝑌! 𝑤 |𝑿! = 𝒙 = 𝔼 𝑌!$%&|𝑊! = 𝑤,𝑿! = 𝒙 = 𝛼 + 𝜏𝑤 + 𝜷"𝑿!

• So this implies a regression model 𝑌!$%& = 𝛼 + 𝜏𝑊! + 𝜷"𝑿! + 𝜀! and 𝜀! = 𝜀! 𝑊!
• Both 𝑿! and 𝑊! are treated as fixed

• Random sampling of the units 
• (𝜀! 0 , 𝜀! 1 ) are independent across 𝑖
• This implies that 𝜀! = 𝜀! 𝑊! are independent across units

Regression model for the observed 𝑌!"#$



OLS with covariates adjustment

• The estimator 𝜏̂"#$ is unbiased for the causal estimand 𝜏
• Even if the model is incorrect (either the violation of 𝔼 𝑌! 0 | 𝑿! = 𝛼 + 𝜷"𝑿! or 𝜏 ≡
𝔼(𝜏!| 𝑿!= 𝒙) ), 𝜏̂!"# still converges to the PATE 𝔼(𝜏!) under complete randomization

Efficiency gain from regression
• If the model is correct, we have 

𝕍 𝜏̂$3& ≈
𝔼 𝕍 𝑌! 1 𝑿!

𝑁4
+
𝔼 𝕍 𝑌! 0 𝑿!

𝑁5
≤
𝜎$%

𝑁$
+
𝜎&%

𝑁&
• If 𝑿! is predictive of the (potential) outcomes, we have a more accurate estimator

• If the linear model is incorrect, the efficiency might be lost
(Freedman 2008, Adv. Appl. Math.)



Estimate of the variance of 𝜏̂!"# with covariates 
adjustment
• Assume homoscedastic error assumption: 

𝕍 𝜀!(0) = 𝕍 𝜀!(1) = 𝜎' = 𝕍 𝑌!$%&|𝑊! , 𝑿!
We can follow standard linear regression inference and estimate variance of 𝜏̂"#$ as

• The robust variance estimator (Sandwich estimator) without assuming 
homoscedasticity



Linear regression with covariates adjustment 
and interactions

What if the assumption 𝜏 ≡ 𝜏 𝒙 = 𝔼(𝜏!| 𝑿!= 𝒙) constant across levels of 𝑿! is incorrect?
• 𝑌! 𝑤 = 𝛼 + 𝜏!𝑤 + 𝜷"𝑿! + 𝜀!∗ = 𝛼 + 𝜏𝑤 + 𝜷"𝑿! + 𝜀! 𝑤 where 𝔼 𝜀!∗|𝑿! = 0 and 
𝜀! 𝑤 = 𝜀!∗ + 𝜏! − 𝜏 𝑤

• Assume CATE  𝜏 𝒙 = 𝔼 𝜏! 𝑿!= 𝒙 = 𝜏 + 𝜸"(𝒙 − L𝑿)
• 𝜏 is still the population average treatment effect
• Then 𝔼 𝜀! 𝑤 | 𝑿! = 𝜸" 𝑿!− L𝑿 𝑤

• The above also implies that 𝔼 𝑌! 𝑤 | 𝑿! = 𝛼 + 𝜏𝑤 + 𝜷"𝑿! + 𝜸" 𝑿!− L𝑿 𝑤

• When does the above model imply the linear regression model with interactions on 
observed data?

𝑌%"4$ = 𝛼 + 𝜏𝑊% + 𝜷5𝑿% + 𝜸5 𝑿%− -𝑿 𝑊% + 𝜀%
• Same assumptions as before (slide 15)
• We can still use least square estimators 



Results on the LRC-CPPT cholesterol data
• We estimate the PATE for both the post-treatment cholesterol level cholf and compliance

• A considerable reduction of the variance of 𝜏̂$3& for cholf when we add the pre-treatment 
cholesterol levels in the regression

• Our goal is always estimating PATE even after “covariates adjustment”
• In randomized experiments satisfying (𝒀 0 , 𝒀 1 ) ⊥ 𝑾, adjusting for covariates or not, 

our estimate of PATE is always valid, we only change the efficiency of our estimate



Results on the LRC-CPPT cholesterol data
• We estimate the PATE for both the post-treatment cholesterol level cholf and compliance

• A considerable reduction of the variance of 𝜏̂$3& for cholf when we add the pre-treatment 
cholesterol levels in the regression

• Our goal is always estimating PATE even after “covariates adjustment”
• In randomized experiments satisfying (𝒀 0 , 𝒀 1 ) ⊥ 𝑾, adjusting for covariates or not, 

our estimate of PATE is always valid, we only change the efficiency of our estimate
• Which variables are “significantly” contributing to the variance reduction of 𝜏̂$3& for cholf ?



Why do we use linear regression in randomized 
experiments?

• Covariate adjustment can be used to improve efficiency in randomized 
experiments

• Under various experimental designs, linear regression models are useful 
methods for this purpose 

• Randomization of treatment assignment protects researchers from 
misspecification
• independence between treatment and covariates 
• linear regression estimators are often consistent even when the 

model is incorrect


