Lecture 10 Non-compliance in randomized experiments, instrumental variables Part II

Outline

- Non-compliance in randomized experiment
 - Covariate adjustment
 - Connection with two-stage least square estimator
 - Weak instrument
- Suggested reading: Imbens and Rubin Chapters 24.6, Peng Chapter 21.3-21.4

Causal diagram for IV

- Treatment received may be affected by measured (X_i) and unmeasured (U_i) covariates
- Treatment assigned is randomized

Assumptions:

- Relevance: Z_i has an effect on W_i
- Randomization: Z_i are randomized
- Exclusion restriction: instrument affects the outcome only through treatment
- Monotonicity (only for binary W_i): no defiers

IV estimator with covariates adjustment

- We can generalize to incorporate covariates when estimating ITT_W and ITT_Y
 - Step 1: regress W_i^{obs} on Z_i and pre-assignment covariates X_i to get an estimate of $\widehat{\text{ITT}}_W$
 - Step 2: regress Y_i^{obs} on Z_i and pre-assignment covariates X_i to get an estimate of \widehat{ITT}_Y
 - Step 3: Take the ratio of estimated coefficients
 - If no covariates to adjust, the ratio estimator is exactly $\hat{ au}^{i
 u}$
- How to estimate the variance of the ratio estimate?
 - Bootstrap:
 - Repeat *M* rounds, for each round:
 - Step 1: randomly sample N units from the triple $(Z_i, W_i^{obs}, Y_i^{obs})$
 - Sample with replacement
 - Step 2: for each bootstrap round, calculate the ratio estimator
 - Calculate the sample variance of ratio estimator across *M* rounds

Two-stage-least-square (2SLS) estimator

- Conventionally in econometrics, researchers use a two-stage least square approach for CATE
- The two-stage least square estimator is equivalent to $\hat{\tau}^{i\nu}$
- Two-stage least square
 - Stage 1: regress W_i^{obs} on Z_i :
 - the fitted coefficient on Z_i is \widehat{ITT}_W
 - Predict W_i^{obs} as $\widehat{W}_i^{\text{obs}} = I\widehat{TT}_W Z_i$
 - Stage 2: regress Y_i^{obs} on $\widehat{W}_i^{\text{obs}}$
 - The estimated coefficient of $\widehat{W}_i^{\text{obs}}$ on stage 2 is exactly $\widehat{\tau}^{i\nu}$ $\frac{\sum_{i=1}^N \widehat{ITT}_W(Z_i - \overline{Z})(Y_i^{\text{obs}} - \overline{Y}^{\text{obs}})}{\sum_{i=1}^N \widehat{ITT}_W^2(Z_i - \overline{Z})^2} = \frac{\sum_{i=1}^N (Z_i - \overline{Z})(Y_i^{\text{obs}} - \overline{Y}^{\text{obs}})}{\widehat{ITT}_W \sum_{i=1}^N (Z_i - \overline{Z})^2} = \frac{\widehat{ITT}_Y}{\widehat{ITT}_W}$
- We can generalize 2SLS to incorporate covariates in both stages

Background

- Policy makers are interested in whether veterans are adequately compensated for their service.
- Angrist (1991) aims to measure the long-term labor market consequences of military service during the Vietnam era
- Question: estimate the causal effect of serving in the military during the Vietnam War on earnings
- We can not directly compare veterans and non-veterans, as they can be systematically different in unobserved ways, even after adjusting for differences in observed covariates
- Serving in the military or not during the Vietnam War could not randomized directly, but the military draft lottery of the Vietnam War was randomized
- This is called a natural experiment

Randomization

- For each birth year of birth cohort 1950-1952, a random ordering of the 365 days was constructed, a cutoff number was pre-determined, young men of that birth year who had a birth date with order before the cutoff "won" the lottery
- Randomization of birth date, instead of the individuals
- Theoretically, each date should be a unit, but in the book example, we treat each individual as a unit and consider the experiment as a completely randomized experiment (it's actually a stratified cluster randomized experiment).

Consequence is that we will tend to under-estimate the uncertainty of the causal estimator.

Relevance and two-sided non-compliance:

- Drafted individuals were required to prepare to serve in the military if fit for the service
- To serve the military, drafted individuals need to pass medical tests and have achieved minimum education level
- Individuals who were not draft eligible also can volunteer to serve in the military

	Non-Veterans ($N_c = 6,675$)				Veterans ($N_{\rm t} = 2,030$)			
	Min	Max	Mean	(S.D.)	Min	Max	Mean	(S.D.)
Draft eligible	0	1	0.24	(0.43)	0	1	0.40	(0.49)
Yearly earnings (in \$1,000's)	0	62.8	11.8	(11.5)	0	50.7	11.7	(11.8)
Earnings positive	0	1	0.88	(0.32)	0	1	0.91	(0.29)
Year of birth	50	52	51.1	(0.8)	50	52	50.9	(0.8)

Check assumptions

- Monotonicity: appears to be a reasonable assumption
 - The lottery numbers impose restrictions on individuals' behaviors.
 - Monotonicity means that no one responds to these restrictions by serving only if they
 are not required to do so
 - It is possible that there are some individuals who would be willing to volunteer if they are not drafted but would resist the draft if required, but it must be a very small fraction and are likely ignorable

	Non-Veterans ($N_c = 6,675$)				Veterans ($N_{\rm t} = 2,030$)			
	Min	Max	Mean	(S.D.)	Min	Max	Mean	(S.D.)
Draft eligible Yearly earnings	0	1	0.24	(0.43)	0	1 50 7	0.40	(0.49)
(in \$1,000's)	Ū	02.0	11.0	(11.0)	Ū	2017		(11.0)
Earnings positive	0	1	0.88	(0.32)	0	1	0.91	(0.29)
Year of birth	50	52	51.1	(0.8)	50	52	50.9	(0.8)

Check assumptions

- Exclusion restriction: may be questionable
 - Consider the never-takers
 - Some never-takers are due to medical exemptions or exemptions due to their education or career choices. For them, the lottery numbers would likely not affect their future behaviors and the outcome
 - Some never-takers did have exemptions but changed their plan (enter graduate school or move to Canada) if they had a low draft number to avoid serving in the military. For them, exclusion restriction can be violated.

Analysis results

ITT Estimates:

- $\widehat{\text{ITT}}_W = 0.1460, \widehat{\mathbb{V}}(\widehat{\text{ITT}}_W) = 0.0108^2$
- $\widehat{\mathrm{ITT}}_{Y} = -0.2129, \,\widehat{\mathbb{V}}(\widehat{\mathrm{ITT}}_{W}) = \sum_{z=0}^{1} \frac{\overline{Y}_{z}^{\mathrm{obs}}(1 \overline{Y}_{z}^{\mathrm{obs}})}{N_{z}(N_{z} 1)} = 0.1980^{2}$
- 95% CI of ITT_Y : (-0.6010, 0.1752)

If we are willing to assume monotonicity and exclusion restriction CATE estimate:

- $\hat{\tau}^{iv} = \frac{-0.2129}{0.1460} = -1.46$ $\widehat{\mathbb{V}}(\hat{\tau}^{iv}) = 1.36^2$
- 95% CI of CATE: (-4.13, 1.2)

Weak instrument

- The instrumental variable is a weak instrument if the compliance probability (π_c or ITT_W) is small
- Problems using weak instrument
 - $\hat{\tau}^{iv} = \frac{I\widehat{T}T_Y}{I\widehat{T}T_W}$: the ratio is very unstable. If ITT_W is close to 0, then a small error (perturbation) in \widehat{ITT}_W can lead to a large error in $\hat{\tau}^{iv}$
 - If the exclusion restriction assumption is violated, the bias in our estimator assuming exclusion restriction is inversely proportional to π_c
- How to identify weak instrument?
 - In the first stage linear regression model $W_i^{obs} = \alpha + \pi_c W_i + \varepsilon_i$, calculate the F-statistics to test whether $\pi_c = 0$
 - A rule of thumb is to check whether the F-statistics is larger to 10 or not.
 - F-statistics smaller than 10 indicates a weak instrument