Lecture 11
Conditional randomized experiment,
unconfoundedness




Outline

e Conditional randomized experiment

 Unconfoundedness
* Balancing score

* Estimators: outcome regression, IPW, matching

* Imbens and Rubin Chapter 12, Peng’s book Chapter 11.3



Conditional randomized experiment

Treatment assignment mechanism depends on pre-treatment covariates X;
 Example: stratified randomized experiment, proportion of treated units can be different in
different strata
Unconfoundedness property: W, 1 (Yi(O),Yi(l)) | X;
e Assignment mechanism does not depend any unobserved U pretreatment confounders
* X, can either be continuous or discrete
* If X; isdiscrete or discretized = stratified randomized experiment

Propensity score: e(X;) = P(W; = 1| X;) € (0,1)
e Overlap assumption: e(x) # 0 or 1 for any x (otherwise we won’t have data to identify t(x))
* In stratified randomized experiment: e(X; = j) = P(W; = 1| X;=j) = N:(j)/N(j)

Identify conditional average treatment effect under unconfoundedness
t(x) = E(Y;(1) — ¥;(0) | X;= x)
=EY;(D) | X;=x,W; =1) — E(Y;(0) | X;=x,W; = 0)
= E(Y°"| X;= x, W; = 1) — E(Y°P5| X;= x, W; = 0)



Conditioning on confounded covariates

(Population) average treatment effect
r = E(r(X) = E (E(v°%| X, W; = 1) — E(v°*| X, W; = 0))

= % (E(r%| Xi= 1, W; = 1) — E(v°%| X;= x, W, = 0)) P(X;= %)
Shared weights

Conditioning on the confounding covariates X; is important
E(YP|W; = 1) — E(v°b|w; = 0)

= 2 E(Y°P%| X;= x,W; = 1)P(X;= x|W; = 1) — z E(Y°°%| X;= x, W; = 1)P(X;= x|W; = 0)
X X
Different weights

|f€(Xl) — P(Wl — 1| Xl) = ¢, then Wi 1 Xi=> P(Xl= X|Wi —= 1) — P(Xlz x|Wl- — O)



Review of Simpson’s paradox

Compare the success rates of two treatment of kidney stores

Treatment A: open surgery; treatment B: small puctures

Treatment A

Treatment B

Small stones

93% (81/87)

87% (234/270)

Large stones

73% (192/263)

69% (55/80)

Both

78% (273/350)

83% (289/350)

What is the confounder here? Size of the stone

* Small stone: propensity score is

* Large stone: propensity score is

= 0.24
874270

203 _ .77
263+80

P(X;=x)
(87 + 270)/700=0.51
(263 + 80)/700=0.49

True average causal effect: 83.2% — 78.2% : (93%x%0.51 + 73%Xx0.49) — (87%X

0.51 + 69%x0.49)



Simpson’s paradox: UC Berkeley gender bias

* In the early 1970s, the University of California, Berkeley was sued for gender
discrimination over admission to graduate school.

|”

» “Causal” effect of sex on application admission (data of Year 1973 admission)

All Men Women
Applicants Admitted Applicants Admitted Applicants Admitted
Total 12,763 41% 8,442 44% 4,321 35%

e Confounding covariate: department For data from departments

Table 1: Data From Six Largest Departments of 1973 Berkeley Discrimination Case A-F:
Repatmeit Applicants a8 Admitted Applicantswomen Admitted “e(X))” P(X;) * Rawaverage admission
rate between men and
A 825 62% 108 82% 0.12 0.21 women:
B 560 63% 25 68% 0.04 0.13 46% V.S. 30%
o 325 37% 593 34% 0.65 0.21
D 417 33% 375 35% 0.47 0.8 « After adjusting for
E 191 28% 393 24% 0.67 0.13 department:
F 272 6% 341 7% 0.56 0.14 40% V.S. 44%



Balancing score

 Under unconfoundedness, we can remove all biases in comparing treated and control units by
conditioning on each level of X;
* Too few samples to compare at each level if too many variables in X;

* Balancing score b(X;) : lower-dimensional functions of X; that remove differences between
treatment and control groups
Wi L X; | b(X;)
e Balancing scores are not unique: any one-to-one mapping of a balancing score is a balancing
score
* Propensity score e(X;) is a balancing score
* We want to show that P(W; = 1|X;,e(X;)) = P(W; = 1|le(X;))
« P(W; = 1]X;,e(X;)) = P(W; = 11X;) = e(X;)
* By the law of total expectation
P(W; = 1le(X;)) = E[W;|e(X;)] = E[E[W;|X;, e(X;)]|e(X;)]
= E[E[W;|X;]le(X;)] = E[e(X;)|e(X;)] = e(X;)
* Propensity score the coarsest balancing score (Lemma 12.3 of Imbens and Rubin book):
e(X;) is a function of any b(X;)



Unconfoundedness with balancing score

* Why do we care about balancing score?
Wi L (Y:(0), (D) | X; = W; L (Y:(0),Y;(1)) | b(X)
e Given a vector of covariates that ensure unconfoundedness, adjustment for differences in
balancing scores removes all biases associated with differences in the covariates

»  For the propensity score W; L (¥;(0),Y;(1)) | e(X;)

« e(X;) can be reviewed as a summary score of the pre-treatment covariate
r = E(E(Y%|e(X), W; = 1) — E(¥°*|e(X), W; = 0))

* The proof can be found on Page 267, Imbens and Rubin Chapter 12.3
« P(W; =1[b(X;)) = P(W; = 11X;, b(X;)) = P(W; = 1]X;) = e(X))
By the law of total expectation
P(W; = 1]Y;(0),Y;(1), b(X;)) = E[E[W;|X;,Y;(0),Y;(1), b(X;)]|Y;(0),Y;(1), b(X;)]
= E[E[W;|X;, ¥;(0),Y;(1D)][Y;(0), ;(1), b(X;)]
= Ele(X;)[Y;(0),Y;(1), b(X;)] = e(X;)




Estimate ATE under unconfoundedness

* Adjust for confounding variables when estimating the average treatment effect t

* Three strategies
* Qutcome regression

* Inverse probability weighting
* Matching
 We are not introducing new methods to estimate ATE for randomized experiments, we review

the estimators we discuss in previous lectures from a different angle, to prepare us to perform
causal inference in observation studies



Outcome regression estimator

+ 7 =E(E(Y°"| X, W; = 1) — E(v°"| X, W; = 0))
Define the conditional expectations u,, (x) = IE(Yl-ObS| X;i=x, W, =w)

We can estimate the conditional expectations via a regression model and obtain i, (x)

Estimator for the ATE: Tyeg = %{ N W (YiObS - ﬁo(Xi)) +(1-— Wi)(ﬁ1(Xi) _YiObS)}

For example, if we assume a linear regression model
E(YLPS| X, W) = a + W, + BTX; + yT (X;— X)W,
e ,(x) =a+tw+ BTx + 97 ( X;— X)w where the coefficients are estimated by OLS
* This is equivalent to fitting two separate linear models on treated units and control units

* Rreg = +{Ziy Wi(1 (X)) — Ao( X)) + A — W) (X)) -l (X))} =
* As Zév=1 Wi (YiObS - ﬁ1(Xi)) = 0 and Zliv=1(1 - W) (YiObS - ﬁo(Xi)) =0



Outcome regression estimator

* Unlike in completely randomized experiment where covariates are not confounders,
the estimator is not consistent if the linear model is incorrect

e Statistical inference: bootstrap

* In practice, we can use any kinds of machine learning approaches (linear regressions,
logistic regression, random forest, SVM, deep learning, ...) to obtain fi,, (x)

* Drawback: does not explicitly rely on overlapping, heavily relies on extrapolation in
the region with little overlap



Sensitivity to model mis-specification

Scatter Plot of Potential and Observed Outcomes

100

Observed Outcome
@® Control

@ Treated

Outcome

Potential Outcomes

YO
Y1

-5.0 25 0.0 25 5.0
Covariate X

Treatment assignment heavily
depend on covariates
Poor overlapping

Adjust for X using linear
regression for treated and control
units separately

Extrapolation is terribly biased
e Lead to biased estimate of
treatment effect



Inverse probability weighting (IPW)

 What if we don’t want to put a model assumption on the observed (potential) outcome?
* If X; is unconfounded (W; L X; ) and the model assumption is wrong, we may lose
efficiency, but %reg is likely still unbiased for

* If X; are confounding covariates and the model assumption is wrong, %reg is often be a
biased estimator of T

* Weighting makes use the following properties to estimate E(Y;(1)) and E(Y;(0))

Yoo . W, Yo . (1— W)
l — IES Yi 1 5 d E L =E Yi 0
e(X;) pl (D] an [ 1 — e(X) sp [ (0)]
Proof:
obs | . obs | w/. . . W [ : 1. Hb'¢
Wil _ g [E [Y, Wil o |k, []E [Yl(l) Wi }X,’” _E, Eop[Yi(1)[Xi] - Ew[W;|Xi]
e(X;) e(X;) e(X;) e(X;)

= Eop [Esp[Yi(DIX]] = Egp [Yi(1)]

Same derivation for the second equation.



Inverse probability weighting (IPW)

What if we don’t want to put a model assumption on the observed (potential) outcome?
* If X; is unconfounded (W; L X; ) and the model assumption is wrong, we may lose
efficiency, but 'Arreg is likely still unbiased for

* If X; are confounding covariates and the model assumption is wrong, %reg is often be a
biased estimator of T

* Weighting makes use the following properties to estimate E(Y;(1)) and E(Y;(0))

Yiobs : Wi
e(X;)

Yo . (1 — W)
1 —e(X;)

= 1Esp [Yi(o)]

= Es [Yi(1)], and ]E[

We give a weight A; = 1/P(W; = w| X;) to each unit i, inversely proportional to the
probability of being assigned to the group w

Intuitively, unit that has a smaller e(X;) has less chance to appear in the treatment group,
so we should give it a higher weight



Inverse probability weighting estimator

N N
. 1 = W;- Yo 1 Y
T = — —_—
W= 5 ey T N T e

where

P 1 _{ 1/(1 —e(X;)) if W; =0,
T eX)Wi - (1 —eX))-Wi T | 1/e(X) if W; = 1.

IVW estimator in stratified randomized experiment

* Propensity score in each strataise(X; =j) =P(W; =1| X;=j) = I;’Vtg))
A 1 N( N(j) 1 —
* Tipw = N ﬁ'{=1 (Zl Bi=i (]])) WLYLObS . Zi:BizjV(]j) (1 . Wi)YiObS) — N N(])(YObS YCObS)

e Same as the estimator from Neyman’s repeated sampling approach



Matching estimator

* In conditional randomized experiments, the IVW estimator do not have any further
assumptions as the propensity scores e(X;) are known.

* Instead of weighting based on e(X;), we can also perform matching based on e(X;)

* We can match treatment and control unit to form a pair if their propensity scores are very
close to each other
* To assess the effect of job-training program on a thirty-ear-old women with two children
under the age of six, with a high school education and four months of work experience in
the past 12 months, we want to compare her with a thirty-ear-old women with two
children under the age of six, with a high school education and four months of work
experience in the past 12 months, who did not attend the program

« AsW; L (¥;(0),Y;(1)) | e(X;), we can treat the matched data as from a paired randomized
experiment



