Lecture 13
Matching methods



Outline

Outcome regression V.S. Matching

Find matched sets

* Matching metrics and algorithms

* Check covariate balancing

Estimate ATT after matching

* Bias adjustment

Suggested reading: Imbens and Rubin book Chapter 15 & 18, Peng’s book Chapter 15



Causal estimand

* |f we treat the units as sampled from a population
* Population average treatment effect: PATE = ATE = E(Y;(1) — Y;(0))
 Average treatment effect for the treated: PATT = ATT = E(Y;(1) — Y;(0) | W;=1)
 Average treatment effect for the control: ATC = E(Y;(1) — Y;(0) | W;= 0)

ATE = P(W;= 1) x ATT + P( W;= 0) x ATC

* Inrandomized experiments, ATE is equivalent to ATT, because treatment and control groups
are comparable in expectation

* |n observational studies, we can be interested in ATT
 Many dataset can have a modest number of treated units, but a relatively large pool of
possible controls

* Treated units are more well defined
e Control units may include units that never have a chance to receive treatment



Outcome regression estimator

 The outcome regression estimator is the same as in conditional randomized experiment

 Under unconfoundedness assumption
v = E(E(°%| X, W; = 1) — E(¥°*| X, W; = 0))

* Define the conditional expectations /
u, (x) = E(Y°PS| X;= x,W; = w) = E(Y;(w)| X;= x)
* We can estimate the conditional expectations via a regression model and obtain fi,, (x)
* Regress YiObS on X; on the treated units and control units separately

* Estimator for the ATE: implement unobserved potential outcome by regression estimates

1

N
treg = {Z W; (Y8 = 2o ( X)) + (1 — W) (@, (X)) —Yi"bS)}



Regression estimator V.S. Matching

Scatter Plot of Potential and Observed Outcomes

e Estimator for the ATT from regression
N 50
%reg = Niz Wi (YObS .UO(XL)) f \
t b=di=1
 Model-based imputation of unobserved potential outcomes
* Drawbacks:
e biased imputation if model is wrong iy
* |f the imbalance of the covariates between the two groups is large, the model-based
results heavily relies on extrapolation in the region with little overlap, which is
sensitive to the model specification assumption

* Matching: nonparametric imputation

T _i N W, Yobs _L Yobs
match — N, i1 U |]V[C| i’

« M : matched set of controls for treated unit i



A simulation data example

[Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference.

Political analysis, 2007]

Linear regression:
positive treatment
effect

Quadratic regression:

negative treatment
effect
Both are wrong!!
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At the two extreme tails of X, there are no treatment units at all



How to find matched sets?

Matching with replacement v.s. matching without replacement
 Whether we restrict each control to match with at most one treated unit or not
* Matching without replacement: harder matching algorithm but easier statistical inference

Exact match: perfect covariate balance X; for the matched control(s) are the same as the
treated unit
* Infeasible when covariate is continuous / many covariates

Coarsened exact matching (Lacus et al. 2011 Political Anal.)
» discretize covariates so that you can perform exact match

Matching based on a distance
* Define a distance measure for any two units: D( X;, X;)

* Aim to make units within matched sets as close as possible



Matching based on a distance

 Mahalanobis metric matching

D(X;, X;) = \/(Xf — Xj)TW_1(Xf - X))

N¢Zi+NE, o - . :
T +NC =, 3, and £, are sample covariance matrices for the treated and control
t c

VX)) =

* Propensity score matching
(X, ]) ‘ n(l — é(Xi)> n(l —é(X;)

* Hybrid matching methods
* Ensure exact matching in some key covariates: sex
* First stratify units by key covariates, match within each strata using distance-based
matching




Matching based on a distance

Nearest-neighbor (NN) matching:
 Define M as the set of indices of M closest control units

M = {] W; =0, z 1{D(Xi:Xj)5D(Xier)} =M
l[|W;=0
* Matching with replacement

Greedy algorithm

 Define an order of the treated units

e Match M control units with the shortest distance, set them aside, and repeat

* match most difficult units first: order treated units in a descending order of é(X;)

Optimal matching

* D:N; X N, bipartite matrix of pairwise distance or a cost matrix

* Select N;:M elements of D such that there is only M elements in each row and at most
one element in each column and the sum of pairwise distances is minimized



Optimal matching

* D:N; X N, matrix of pairwise distance or a cost matrix
* Select N¢M elements of D such that there is only M element in each row and at most one
element in each column and the sum of pairwise distances is minimized

* Linear Sum Assignment Problem (LSAP)
* Binary N; X N, matching matrix: S with S;; € {0,1}
* Optimization problem

C NC
mmZZSUDU sub]ecttOZSU < ,ZS

i=1j= 1=1 Jj=1

e can apply the Hungarian algorithm



A simple illustrative example

e Consider 7 units

 Matching based on the linearized estimated propensity

- e(X;)

 Treated unit 1 matched with control unit 5
 Treated unit 2 matched with control unit 3

* NN, greedy algorithm and optimal matching result in the
same matched sets here

Unit W; &X;) £0X;)
1 1 0577 0310
2 1 0.032 —3.398
3 0 0.136 —1.846
4 0 0.003 —5.913
5 0 0310 —0.798
6 0 0.000 —9.424
7 0 0262 —1.033




Further restrictions on the matched sets

* Rejecting matches of poor quality
* For some units, even the closest match may not be close enough
* Drop treated units if it’s hard to find a good match. E.x., drop i if
D(X; X;) > dmpax = 0.1
e Often eliminate only treated units with propensity score very close to 1

* How to determine M?
e M=1
 Matching with Caliper: controls that are outside of some distance (caliper) of a treated
unit are not allowed to be matched with the treated units.
* Keep all controls j satisfying D( X;, Xj) < d;gq
e Can use greedy algorithm
* Optimal matching: define D;; = o if D;; > d,
e M increases with sample size
 Smaller M, smaller bias but larger variance; larger M, larger bias but smaller variance



Check covariate balancing after matching

e Statistics we can use to assess the balancing of a particular covariate

» Standardized mean difference (also called the normalized difference, not the t-statistics)
1 1
Ft IiV=1 Wi (Xik _WZUEML'CXUR)

2
St

A =

May compare A.; with 0.1
* Before matching, we may calculate the denominator of Standardized mean difference
as / (s¢ + 52)/2
* Log ratio of the sample variances I',; = In(s;) — In(s,)
e Comparing the distribution function in the treated group and control group

® Empirical Cdf: Fc(x) Z ]-X{x and Ft(X) Z IX{x

tWU :W]

* Proportion of treated units outside of the 2.5% and 97.5% quantiles of the control
distribution

APUS (1 _ (Ft (F_I(U 9’?5))) + F, (Fc_l(o' 025)))



Love plot
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Figure 15.2. Covariate balance before (*) and after (+) lps and after Mahalanobis (o) matching,

for the Reinisch barbiturate data



How to estimate ATT after matching

e Unless exact matching, under unconfoundedness, the probability of assignment to the
treatment is only approximated the same within each matched set

* In practice, one may ignore the potential bias, and analyze the datasets as from a pairwise
randomized experiment

A ~match 1 ~match
match _ szbs . Ygllés, T — § -
l

T t — i
: N
L i:WiII
\ (%match) _ 1 E : (Ypbs _ yobs _ %match)2
‘ Ne(Ne — 1) I ; '
i:Wi=1

 Another approach is to apply outcome regression on the matched dataset
 Treat matching as a pre-processing step to improve covariate balancing in the dataset
* Reduce bias in matching
 Or we can use regression to only adjust for the potential biases (see later)



The minimum wage data

* Aninfluential study by Card and Krueger (1995)
e The goal is to evaluate the effect of raising the state minimum wage in Ney Jersey in 1993

 They collected data on employment at fast-food restaurants in Ney Jersey (treated group)
and in neighboring state of Pennsylvania (control group)

e Each unitis a restaurant

* Pre-treatment covariates: initial number of employees, starting wage, average time until
first raise, identity of the chain

 Qutcome: number of employees after the raise in the minimum wage



The minimum wage data
Table 18.1. The Card-Krueger New Jersey and Pennsylvania Minimum Wage Data

(N=347) (N, =68) (Ny=279)

(controls) (treated) ,
Nor Log Ratio

Mean (S.D.) Mean (S.D.) Mean (S.D.) Dif ofSTD

initial empl 17.84 (9.62) 20.17 (11.96) 17.27 (8.89) —0.28 —0.30
burger king 042 (0.49) 043 (0.50) 042 (0.49) —-0.02 -0.01

kfc 0.19 (0.40) 0.13 (0.34) 0.21 (0.41) 020 0.17
roys 0.25 (0.43) 025 (©0.44) 025 (©043) 0.00 —-0.00
wendys 0.14 (0.35) 0.19 (©0.40) 0.13 (0.33) —-0.18 —0.18

initial wage 4.61 (0.34) 4.62 (0.35) 4.60 (0.34) —0.05 -0.02
time until 17.96 (11.01) 19.05 (13.46) 17.69 (10.34) —0.11 —-0.26

raise
pscore 0.80 (0.05 0.79 (©0.06) 081 (©0.04) 0.28 -0.35

final empl 17.37 (8.39) 17.54 (7.73) 17.32 (8.55)




The minimum wage data

Estimated propensity score model:
Higher initial employment, lower propensity score

[(X;) = 1.93 — 0.03 x initial empl

Table 18.2. Estimated Parameters of Propensity Score

jJor the Card-Krueger New Jersey and Pennsylvania
Minimum Wage Data

Variable Est (s.€.) t-Stat
Intercept 1.93 (0.14) 14.05
Linear terms

initial empl —0.03 (0.01) —2.17




The minimum wage data on 20 units

Unit State chain initial empl

final empl

i W X; X yobs
1 NJ BK 22.5 40.0
2 NJ  KEC 14.0 12.5
3 NJ BK 37.5 20.0
4 NJ  KEC 9.0 3.5
5 NJ  KFEC 8.0 5.5
6 PA BK 10.5 15.0
7 PA  KFEC 13.8 17.0
8 PA  KEC 8.5 10.5
9 PA BK 25.5 18.5
10 PA BK 17.0 12.5
11 PA BK 20.0 19.5
12 PA BK 13.5 21.0
13 PA BK 19.0 11.0
14  PA BK 12.0 17.0
15 PA BK 32.5 22.5
16  PA BK 16.0 20.0
17 PA  KFC 11.0 14.0
18 PA  KFEC 4.5 6.5
19 PA BK 12.5 31.5
20 PA BK 8.0 8.0

* Matching order:
if we rank based on é(X;):5,4,2,1,3
« Matching metric: T A A
« Only based on I(X,): 20, 8, 7, 11, 15

* |f we want exact match on the chain brand
5<->8,4<->17,2<->7,1<->11,3<->15

 |f we want to match on Mahalanobis

distance, can code the restaurant brand by
0/1 indicators, then 5<->20,4<-> 8



The minimum wage data on 20 units

; m;: Ylpbs Y}%??S 7 Z_match
1 11 40.0 19.5 20.5
2 7 12.5 17 —4.5
3 15 20.0 22.5 —2.5
4 8 3.5 10.5 —7
5 20 5.5 8.0 —2.5
i:tmatch +0.8
@r ( %tmatch £ (2

; m€ Ypbs Yobs f_match
I i my I

1 11 40.0 19.5 20.5
2 7 12.5 17.0 —4.5
3 15 20.0 22.5 —-2.5
4 17 3.5 14 -10.5
5 8 5.5 10.5 -5

:Etmatch —04

5.42



The bias of matching estimators (1-1 matching)

* Individual treatment effect is estimated with a bias due to matching discrepancy

~match
ESP [ T;

Wi=1,X; X | = Egp | Yi(1) = Y (0)] Xis Xir | = ptiX) = pcXimt)
= 7(X;) + (uc(X;) — ﬂc(Xm;:'))-

We refer to the last term of this expression,

Bi = uc(X;) — ﬂc(Xmg’),
as the unit-level bias of the matching estimator.

* If we can have estimates of B;, then we can potentially correct for the biases
* We can obtain the estimates of B; by outcome regression: only need an estimate ji,( X;)

~match _ yobs obs 5



Three types of regression

 Regression on the differences

Yoo — Yg,}gs =7+ (Xi —me) Ba+vi=1t+4+Difi+v;

Bi X; _me) Bd-

* Regression only on the matched control
me = Oc¢ +meﬂc + Vei

Bi = (X; — me)ﬂc
 Regression on both the treated and the matched controls (pooled sample)

—

Bi = Xi — Xme)B,

 These methods differ in their robustness to model assumptions and efficiency



Results on the 20 units

Difference Regression

Control Regression

Pooled Regression

(Approach #1) (Approach #2) (Approach #3)
Regression coefficients
Intercept —1.30 4.21 12.01
Treatment indicator — — 1.63
Restaurant chain —1.20 2.65 —7.32
Initial employment 1.43 0.62 0.39

Different regression methods differ a lot because small sample size

In real data, they are typically similar
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