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Sensitivity analysis
 Most often, validity of unconfoundedness can not be easily checked. Alternatively, one

should check sensitivity of a causal analysis to unconfoundedness

* Sensitivity analysis aims at assessing the bias of causal effect estimates when the
unconfoundedness assumption is assumed to fail in some specific and meaningful ways

e Sensitivity is different from testing — unconfoundedness is intrinsically non-testable, more
of a “insurance” check

* Sensitivity analysis in causal inference dates back to the Hill-Fisher debate on causation
between smoking and lung cancer, and first formalized in Cornfield (1959, JNCI)



Bounds under no assumptions

* Consider a simple case where: 1. no covariates; 2. binary outcome

* We are interested in the ATE
Tsp = Ut — He
where
pue=EYi(DI=p- per+ A —=p)- peo,

and

pe =E[Y;(0)]=p- el + U —p)- uco.

Her = E[Y;(D|W; = 1]
e = E[Y;(DIW; = 0]

|Identifiable
He = E[Y;(0)|W; = 1] from

observed

Heo = E[G;(0)[W; =0]

p=PW;=1)

Bound the unknown p; ¢ and . 4
by [0, 1] as the outcome is binary



Bounds under no assumptions

 So we get the bounds

ue € [p - e v per + (1 —p)|
Ue € [(1 - p) "HUe,0 (1 - p) "Uco + p]

* The the bound of ATE T = Tg), = lUy — U iS
T€p 1 — (A=) theo—D0 Hea+ (A —p) = (1 —p) - picy]

 Unfortunately, because we don’t have any assumptions at all, this bound is not

very informative
o TUDPDET _ Tlower

=puey + (1 —=p) = A =plico —pre1 + (1 —pluco+p =1
» By definition, T#PP¢" < 1 and 7/°Y¢" > —1, bound always covers 0
* Better than the naive bound [—1,1]



The Imbens-Rubin-Sacerdote lottery data

[Estimating the effect of unearned income on labor earnings, savings, and consumption: Evidence from a
survey of lottery players. American economic review, 2001]

e Goal: Estimate magnitude of lottery prizes (unearned income) on economic
behavior, including labor supply, consumption and savings

* Data collection:
 “Winners”: individuals who had played and won large sums of money in
the Massachsetts lottery
 “Losers”: individuals who played the lottery and had won only small prizes

* We analyze a subset of N; = 259 and N, = 237 individuals with complete
answers



Result on the |lottery data

* Binary outcome: whether the earning after treatment is positive or not

* Estimated quantities: p = % = 0.4675, i1 = ¥°P5 = 0.4106 and fi. o = V,2P5 =
0.5349

* Plugin these quantities into our bound:
T € [—0.56,0.44]

* The two-sample difference estimate: Y25 — Y°bs = —0.124



Sensitivity analysis bound: a more useful example

The smoking on lung cancer effect example (Cornfield et al. 1959 INCI)

* Fisher argued the association between smoking and lung cancer may be due to a common
gene that causes both

Unmeasured
U | genetic confounder

W Y

Smoking Lung cancer

* Observed association between smoking and lung cancer
* Risk ratio

* Observed risk ratio RRy,y = 9
e (Can this be fully explained by U?



Sensitivity analysis bound: a more useful example

Assume that U; are binary variables

Define
po = PlU; = 1|W; = 0], p; = PlU; = 1|W; = 1]

RRWU - &
Po

If there is no causal effect of smoking on lung cancer, then Y;(0) = Y;(1) =Y;
P[YPPS = 1|w; = 0,U; = 0] = P[YPPS = 1|w; = 1,U; = 0] = P[Y; = 1|U; = 0] = 1,
PIYPPS = 1|w; = 0,U; = 1] = P[YPPS = 1|W; = ,U; = 1] = P[Y, = 1|U; = 1] = n

Then we have
_ P[YiObS = 1|Wi =0,U; = O] _ ro(1 —py1) + 1Py
P[YiObS = 1|Wl = O, Ui = 1] TO(l _ pO) + Do




Sensitivity analysis bound: a more useful example

ro(1 —p1) + 1Py PlU; =1|W; =1] pq

, RR..,., = —
10(1 —po) + 11Po wu

RR =
wr PlU; =1|lW; =0] p,

* Asp; = py because we observe RRy,y > 1, then (from some math)
ro(1 —p1) + 1ip1 P

RR = <
WY 1o(1 —po) +11Po ~ Po

= RRyy

* Cornfield showed that if Fisher is right, we have RRy,;; = RRyy = 9
e Such a genetic confounder might be too strong to be realistic

* If we believe that such genetic confounder does not exist, then smoking should have a causal
effect on lung cancer



Another sensitivity analysis idea: base on a model

ldea:
w; L (Y;(0),Y;(D)| X,

* How sensitive is our estimate of causal effect to the presence of U;?

* A model-based approach (Rosenbaum and Rubin, 1983 JRSS-B)

* Consider the scenario that Y;(w) is binary
* Assume that the unmeasured confounding is binary

e Build the following model

U;~Bernoulli(q)
logit(P[W; = 1| X, U;]) =vo + X! Kk +y1U; Propensity score model
logit(P[Y;(0) = 1| X;,U;]) = Bo + X; bo + BoU;
logit(P[Y;(1) = 1| X;,U;]) = ag + X{ by + a1 U;

Outcome regression model



Another sensitivity analysis idea: base on a model

U;~Bernoulli(q)
logit(P[W; = 1| X;,U;]) =vo + X!k +y,U; Propensity score model
logit(P[Y;(0) = 1| X;,U;]) = Bo + X] bo + P1U;
logit(P[Y;(1) = 1| X;,U;]) = ap + X{ by + a1 U;

Outcome regression model

 Sensitivity parameters: (q, ¥4, b1, @1)
 Sensitivity parameters can not be estimated as unmeasured confounder U; is unobserved

* Sensitivity analysis: Set the sensitivity parameters to different values and see how estimates of

causal effects change



An example of calculation U;~Bernoulli(q)
logit(P[W; = 1| X;, Ui]) =vo + v1U;
logit(P[Y;(0) = 1| X;, U;]) = Bo + B1U;
* Consider the simpler case where there is no X; logit(PlY;(1) = 1| X;,U;]) = ag + a1 U;

» Our observed data provides estimates of p = E(W;) = P(W; = 1), uz, = E[Y??>|W; = 1] and
Heo = E[Y27|W; = 0]

exp (Yo + 71) exp (o)
p=q: +U =g
1+ exp(yo + 1) 1 +exp (o)
i1 =Pr(U; = 1|W; = 1) - E[Y,(D)|W; = 1,U; = 1] . 9 TrenGoFom exp(Bo+ A1)
+ (=P = Wy = 1)) - EGDIWi = LU; =01 4" Treptorm + 1~ D" Fepge | T PP+ A
q- 1—?—25)(:)3)(0)/—(')_—);—1)))1) exp (ao + ai) 1-9) m exp (fo)

= +

exp (yo+71) . _exp(r0)
1 I+-exp (yo+71) t(0 -9 1+exp (y0) I +exp(ao+a1)

1 1 ’ :
9" T+exp (7o+71) +0-9- 1+exp (yo) I+ exp (ho)

[ —g). X200
(1 =9 T 00 . _&xp(ao) , Given any value of (g, ¥y, B1, @1), we can solve the
exp (oty) 4 (1 q) - M 1 4+ exp (agp)

9" Trexp (yo+71) +exp (70) three equations to estimate (¥, By, @)

_|_




An example of calculation U;~Bernoulli(q)
logit(P[W; = 1|U;]) = yo + 11U

logit(P[Y;(0) = 1|U;]) = Bo + B1U;
 Consider the simpler case where there is no X; logit(P[Y;(1) = 1|U;]) = ay + a1 U;

» Our observed data provides estimates of p = E(W;) = P(W; = 1), uz, = E[Y??>|W; = 1] and
Heo = E[Y27|W; = 0]

* Given any value of (q, y1, f1, @1), we can solve the three equations to estimate (yq, 5o, @)

» Then given the value of both (q,¥1, B1, a1) and (o, Bo, c?o), we can estimate

Heo = E[Y;(D)|W; = 0] and p¢y = E[Y;(0)|W; = 1]
* The average treatment effect will be

Tsp = Ut — Uc =P - (,Ut,l — ,Uc,l) +{-p)- (,ut,O — ,uc,O)'



Sensitivity Analysis

A more general approach (Rosenbaum book 2002)

Define ; = e(Xj, U;) for a unit j. Foragiven T, assume

y mi(1 — )

1
S < I' all pairs of units (j, k) with X; = X

(1l — 7

Then we assess how the inference on causal effect change within the set for different I’

 Tutorial (R package sensitivitymult):

https://rosenbap.shinyapps.io/learnsenShiny/



https://rosenbap.shinyapps.io/learnsenShiny/

