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Sensitivity analysis

• Most often, validity of unconfoundedness can not be easily checked. Alternatively, one 
should check sensitivity of a causal analysis to unconfoundedness 

• Sensitivity analysis aims at assessing the bias of causal effect estimates when the 
unconfoundedness assumption is assumed to fail in some specific and meaningful ways 

• Sensitivity is different from testing – unconfoundedness is intrinsically non-testable, more 
of a “insurance” check 

• Sensitivity analysis in causal inference dates back to the Hill-Fisher debate on causation 
between smoking and lung cancer, and first formalized in Cornfield (1959, JNCI)



Bounds under no assumptions

• Consider a simple case where: 1. no covariates; 2. binary outcome
• We are interested in the ATE

𝜇!,# = 𝔼 𝑌$ 1 𝑊$ = 1
𝜇!,% = 𝔼 𝑌$ 1 𝑊$ = 0

𝜇&,# = 𝔼 𝑌$ 0 𝑊$ = 1
𝜇&,% = 𝔼 𝑌$ 0 𝑊$ = 0

𝑝 = 𝑃(𝑊! = 1)

Identifiable 
from 

observed 
data

Bound the unknown 𝜇!,% and 𝜇&,# 
by [0, 1] as the outcome is binary



Bounds under no assumptions

• So we get the bounds
𝜇" ∈ 𝑝 * 𝜇",$, 𝑝 * 𝜇",$ + 1 − 𝑝
𝜇% ∈ 1 − 𝑝 * 𝜇%,&, 1 − 𝑝 * 𝜇%,& + 𝑝

• The the bound of ATE 𝜏 = 𝜏'( = 𝜇" − 𝜇% is
𝜏 ∈ 𝑝 * 𝜇",$ − 1 − 𝑝 * 𝜇%,& − 𝑝, 𝑝 * 𝜇",$ + 1 − 𝑝 − 1 − 𝑝 * 𝜇%,&

• Unfortunately, because we don’t have any assumptions at all, this bound is not 
very informative
• 𝜏)((*+ − 𝜏,-.*+

= 𝑝𝜇",$ + 1 − 𝑝 − 1 − 𝑝 𝜇%,& − 𝑝𝜇",$ + 1 − 𝑝 𝜇%,& + 𝑝 ≡ 1
• By definition, 𝜏)((*+ ≤ 1 and 𝜏,-.*+ ≥ −1 , bound always covers 0
• Better than the naive bound [−1,1]



The Imbens-Rubin-Sacerdote lottery data

• Goal: Estimate magnitude of lottery prizes (unearned income) on economic 
behavior, including labor supply, consumption and savings

• Data collection:
• “Winners”: individuals who had played and won large sums of money in 

the Massachsetts lottery
• “Losers”: individuals who played the lottery and had won only small prizes

• We analyze a subset of 𝑁! = 259 and 𝑁& = 237 individuals with complete 
answers

[Estimating the effect of unearned income on labor earnings, savings, and consumption: Evidence from a 
survey of lottery players. American economic review, 2001]



Result on the lottery data

• Binary outcome: whether the earning after treatment is positive or not

• Estimated quantities: �̂� = /!
/
= 0.4675, �̂�",$ = ;𝑌"012 = 0.4106 and �̂�%,& = ;𝑌%012 =

0.5349 

• Plug in these quantities into our bound:
𝜏 ∈ −0.56, 0.44

• The two-sample difference estimate: ;𝑌"012 − ;𝑌%012 = −0.124



Sensitivity analysis bound: a more useful example

The smoking on lung cancer effect example (Cornfield et al. 1959 JNCI)

• Fisher argued the association between smoking and lung cancer may be due to a common 
gene that causes both

• Observed association between smoking and lung cancer
• Risk ratio

• Observed risk ratio 𝑅𝑅'( ≈ 9
• Can this be fully explained by 𝑈?

U

W Y

Unmeasured 
genetic confounder

Lung cancerSmoking

𝑅𝑅!" =
𝑃 𝑌#$%& = 1 𝑊# = 1
𝑃 𝑌#$%& = 1 𝑊# = 0



Sensitivity analysis bound: a more useful example

• Assume that 𝑈$ are binary variables
• Define 

𝑝% = 𝑃 𝑈$ = 1 𝑊$ = 0 , 𝑝# = 𝑃 𝑈$ = 1 𝑊$ = 1

• 𝑅𝑅') = *'
*(

• If there is no causal effect of smoking on lung cancer, then 𝑌$ 0 = 𝑌$ 1 = 𝑌$
𝑃 𝑌!012 = 1 𝑊$ = 0,𝑈$ = 0 = 𝑃 𝑌!012 = 1 𝑊$ = 1,𝑈$ = 0 = 𝑃 𝑌$ = 1 𝑈$ = 0 = 𝑟%,	
𝑃 𝑌!012 = 1 𝑊$ = 0,𝑈$ = 1 = 𝑃 𝑌!012 = 1 𝑊$ = 1,𝑈$ = 1 = 𝑃 𝑌$ = 1 𝑈$ = 1 = 𝑟#	

• Then we have 

𝑅𝑅'( =
𝑃 𝑌!012 = 1 𝑊$ = 0,𝑈$ = 0
𝑃 𝑌!012 = 1 𝑊$ = 0,𝑈$ = 1

=
𝑟% 1 − 𝑝# + 𝑟#𝑝#
𝑟% 1 − 𝑝% + 𝑟#𝑝%



Sensitivity analysis bound: a more useful example

𝑅𝑅'( =
𝑟% 1 − 𝑝# + 𝑟#𝑝#
𝑟% 1 − 𝑝% + 𝑟#𝑝%

, 𝑅𝑅') =
𝑃 𝑈$ = 1 𝑊$ = 1
𝑃 𝑈$ = 1 𝑊$ = 0

=
𝑝#
𝑝%

• As 𝑝# ≥ 𝑝% because we observe 𝑅𝑅'( > 1, then (from some math)

𝑅𝑅'( =
𝑟% 1 − 𝑝# + 𝑟#𝑝#
𝑟% 1 − 𝑝% + 𝑟#𝑝%

≤
𝑝#
𝑝%
= 𝑅𝑅')

• Cornfield showed that if Fisher is right, we have 𝑅𝑅') ≥ 𝑅𝑅'( ≈ 9

• Such a genetic confounder might be too strong to be realistic

• If we believe that such genetic confounder does not exist, then smoking should have a causal 
effect on lung cancer



Another sensitivity analysis idea: base on a model

Idea:

𝑊$ 	 ⊥ 𝑌$ 0 , 𝑌$ 1 |	 𝑿$ , 𝑈$

• How sensitive is our estimate of causal effect to the presence of 𝑈$?

• A model-based approach (Rosenbaum and Rubin, 1983 JRSS-B)

• Consider the scenario that 𝑌!(𝑤) is binary

• Assume that the unmeasured confounding is binary

• Build the following model

observed
unobserved

𝑈!~Bernoulli(𝑞)
logit 𝑃 𝑊! = 1 	 𝑿!, 𝑈! = 𝛾" +	𝑿!#𝜿 + 𝛾$𝑈!

logit 𝑃 𝑌!(0) = 1 	 𝑿!, 𝑈! = 𝛽" +	𝑿!#𝒃𝟎 + 𝛽"𝑈!
logit 𝑃 𝑌!(1) = 1 	 𝑿!, 𝑈! = 𝛼" +	𝑿!#𝒃𝟏 + 𝛼$𝑈!

Propensity score model

Outcome regression model



Another sensitivity analysis idea: base on a model

• Sensitivity parameters: (𝑞, 𝛾$, 𝛽$, 𝛼$)

• Sensitivity parameters can not be estimated as unmeasured confounder 𝑈! is unobserved

• Sensitivity analysis: Set the sensitivity parameters to different values and see how estimates of 

causal effects change

𝑈!~Bernoulli(𝑞)
logit 𝑃 𝑊! = 1 	 𝑿!, 𝑈! = 𝛾" +	𝑿!#𝜿 + 𝛾$𝑈!

logit 𝑃 𝑌!(0) = 1 	 𝑿!, 𝑈! = 𝛽" +	𝑿!#𝒃𝟎 + 𝛽$𝑈!
logit 𝑃 𝑌!(1) = 1 	 𝑿!, 𝑈! = 𝛼" +	𝑿!#𝒃𝟏 + 𝛼$𝑈!

Propensity score model

Outcome regression model



An example of calculation

• Consider the simpler case where there is no 𝑿!

• Our observed data provides estimates of p = 𝔼 𝑊! = ℙ(𝑊! = 1),  𝜇',$ = 𝔼 𝑌!)*+ 𝑊! = 1] and 

𝜇,," = 𝔼 𝑌!)*+ 𝑊! = 0] 

𝑈!~Bernoulli(𝑞)
logit 𝑃 𝑊! = 1 	 𝑿!, 𝑈! = 𝛾" +	𝛾$𝑈!
logit 𝑃 𝑌!(0) = 1 	 𝑿!, 𝑈! = 𝛽" +	𝛽$𝑈!
logit 𝑃 𝑌!(1) = 1 	 𝑿!, 𝑈! = 𝛼" + 𝛼$𝑈!

Given any value of (𝑞, 𝛾), 𝛽), 𝛼)), we can solve the 
three equations to estimate (𝛾*, 𝛽*, 𝛼*)



An example of calculation

• Consider the simpler case where there is no 𝑿!

• Our observed data provides estimates of p = 𝔼 𝑊! = ℙ(𝑊! = 1),  𝜇',$ = 𝔼 𝑌!)*+ 𝑊! = 1] and 

𝜇,," = 𝔼 𝑌!)*+ 𝑊! = 0] 

• Given any value of (𝑞, 𝛾$, 𝛽$, 𝛼$), we can solve the three equations to estimate (𝛾", 𝛽", 𝛼")

• Then given the value of both 𝑞, 𝛾$, 𝛽$, 𝛼$  and E𝛾", F𝛽", E𝛼" , we can estimate 

𝜇'," = 𝔼 𝑌!(1) 𝑊! = 0] and 𝜇,,$ = 𝔼 𝑌!(0) 𝑊! = 1] 

• The average treatment effect will be 

𝑈!~Bernoulli(𝑞)
logit 𝑃 𝑊! = 1 𝑈! = 𝛾" +	𝛾$𝑈!
logit 𝑃 𝑌!(0) = 1 𝑈! = 𝛽" +	𝛽$𝑈!
logit 𝑃 𝑌!(1) = 1 𝑈! = 𝛼" + 𝛼$𝑈!



Sensitivity Analysis

A more general approach (Rosenbaum book 2002)

Define 𝜋@ = 𝑒(𝑋@, 𝑈@) for a unit 𝑗. For a given Γ, assume

Then we assess how the inference on causal effect change within the set for different Γ

• Tutorial (R package sensitivitymult):

https://rosenbap.shinyapps.io/learnsenShiny/

all pairs of units (𝑗, 𝑘)	with 𝑋- = 𝑋.

https://rosenbap.shinyapps.io/learnsenShiny/

