
Lecture 5 
Neyman’s repeated sampling 

approach for completely 
randomized experiments



Outline

• Neyman’s repeated sampling approach

• Motivation

• Variance calculation

• CI and hypothesis testing

• Fisher VS Neyman

• Suggested reading: Imbens and Rubin Chapter 6, Peng’s book Chapter 4



Motivation
•  Limitations of the Fisher’s randomization inference

• Do not allow heterogeneity of causal effects across individuals
• Do not have inference for the population

• Completely randomized experiments: can we use two sample test?

• Neyman’s approach
• Allow heterogeneity of causal effects across individuals
• Focus on estimation and inference for the average treatment effect: either just for the 
𝑁	samples or for the whole population (PATE) 

• Repeated sampling: randomization distribution of assignment vector 𝑾, and sampling 
generated by drawing from the population units if inferring PATE



Example: Duflo-Hanna-Ryan teacher-incentive 
experiment
• Conducted in rural India, designed to study the effect of financial incentives on teacher 

performance 
• In total N = 107 single-teacher schools, 53 schools are randomly chosen and are given a salary 

that’s tied to their attendance 
• One outcome: open (proportion of times the school is open during a random visit)



Example: Duflo-Hanna-Ryan teacher-incentive 
experiment

Standard two-sample test:

• This calculation ignores the randomization procedure of the treatment assignment
• Can we justify this standard difference-in-means analysis from the randomization perspective?

�̂�!"# = 0.80 − 0.58 = 0.22

𝑠. 𝑒. =
0.19$

54 +
0.13$

53 ≈ 0.032

95%	𝐶𝐼: [0.22 − 1.96	 ∗ 0.032, 0.22 + 1.96	 ∗ 0.032]



Estimation of the sample average treatment effect

• Causal estimand: SATE = 𝜏!" =
#
$
∑%&#$ {𝑌% 1 − 𝑌% 0 } for the sampled 𝑁 units

• Difference-in-means estimator:

where 

• Under complete randomization (random 𝑊) and treat the potential outcomes as fixed (fixed 
𝒀 0 = {𝑌% 0 , 𝑖 = 1,⋯ ,𝑁} and 𝒀 1 = {𝑌% 1 , 𝑖 = 1,⋯ ,𝑁} ), this estimator is unbiased





Calculate the variance of the estimator

• Causal estimand: SATE = 𝜏!" =
#
$
∑%&#$ {𝑌% 1 − 𝑌% 0 } for the sampled 𝑁 units

• Difference-in-means estimator:

• Under complete randomization and fixed potential outcomes, we can also calculate the 
variance of �̂�<=> (if you are interested in the proof, see Appendix A of Chapter 6 in Rubin’s book or Section 4.3 in Peng’s book)

V' ̂𝜏!"#|𝒀 0 , 𝒀 1 =
𝑆()

𝑁(
+
𝑆*)

𝑁*
−
𝑆(*)

𝑁
where Sample variance 

of 𝑌% 0  and 𝑌% 1

Sample variance 
of the unit-level 
treatment effects



Some explanation of the variance

V' ̂𝜏!"#|𝒀 0 , 𝒀 1 =
𝑆()

𝑁(
+
𝑆*)

𝑁*
−
𝑆(*)

𝑁

• Where does the randomness come from? Treatment assignment 
• Potential outcomes are fixed (conditioned on)

• How is it different from the classical variance formula of �̂�<=>?
• Classical formula treats 𝑌% i.i.d. within group and the group indicators 𝑊% fixed

• How is it different from the setting in Fisher’s randomization test?
• The formula allows for arbitrary treatment effect sizes and heterogeneity
• This formula only works for completely randomized experiment

• How to estimate these quantifies with observed variables?



Conservative approximation of the variance of the 
estimator
• 𝕍' ̂𝜏!"#|𝒀 0 , 𝒀 1 = +&'

$&
+ +('

$(
− +&('

$
where 

• Estimate 𝑆() and 𝑆*) by sample variance of observed outcomes

𝑠() =
∑%:')&-(𝑌%

./" − <𝑌(./"))

𝑁( − 1
, 𝑠() =

∑%:')&#(𝑌%
./" − <𝑌*./"))

𝑁* − 1
• 𝑆(*)  is not identifiable 

• No heterogeneity of treatment effects across individuals 𝑆(*) = 0
• In general, 𝑆(*) ≥ 0 though the exact value is unknown

Sample variance 
of 𝑌% 0  and 𝑌% 1

Sample variance 
of the unit-level 
treatment effects



Conservative approximation of the variance of the 
estimator
• 𝕍' ̂𝜏!"#|𝒀 0 , 𝒀 1 = +&'

$&
+ +('

$(
− +&('

$
where 

• A conservative estimator of Var( ̂𝜏<=>|𝒀 0 , 𝒀 1

𝕍( ̂𝜏<=>|𝒀 0 , 𝒀 1 ≤
𝑆(
)

𝑁(
+
𝑆*
)

𝑁*
= 𝔼'

𝑠(
)

𝑁(
+
𝑠*
)

𝑁*
	 |𝒀 0 , 𝒀 1

Sample variance 
of 𝑌% 0  and 𝑌% 1

Sample variance 
of the unit-level 
treatment effects

Neyman’s estimator of the variance, same as 
s.e. on slide 5



Estimation of the population average treatment effect

• Causal estimand: PATE = 𝜏"0 = 𝔼 𝑌% 1 − 𝑌% 0 = 𝔼 SATE = 𝔼 𝜏!"
• We assume that (𝑌% 0 , 𝑌% 1 ) are jointly i.i.d samples from a super population with variance 

𝜎$% and 𝜎&% 
• We still use difference-in-means estimator:

 

• �̂�!"#	is still unbiased for 𝜏"0: 𝔼 )𝜏<=> = 𝔼 𝔼' ̂𝜏!"#|𝒀 0 , 𝒀 1 = 𝔼 𝜏#( = 𝜏"0

• The variance of �̂�!"# (variance decomposition formula):
• Check Wikipedia if you do not know the variance decomposition formula

https://en.wikipedia.org/wiki/Law_of_total_variance

𝕍 �̂�12! = 𝔼 𝕍' �̂�12!|𝒀 0 , 𝒀 1 + 𝕍 𝔼' �̂�12!|𝒀 0 , 𝒀 1

https://en.wikipedia.org/wiki/Law_of_total_variance


Variance calculation for the population

𝕍 �̂�12! = 𝔼 𝕍' �̂�12!|𝒀 0 , 𝒀 1 + 𝕍 𝔼' �̂�12!|𝒀 0 , 𝒀 1

• 𝕍' �̂�12!|𝒀 0 , 𝒀 1 = +&'

$&
+ +('

$(
− +&('

$
, with 

𝔼 𝑆() = 𝜎(), 𝔼 𝑆*) = 𝜎*), 𝔼 𝑆(*) = 𝕍(𝑌% 1 − 𝑌% 0 )

• 𝕍 𝔼' �̂�12!|𝒀 0 , 𝒀 1 = 𝕍 𝜏!" = 𝕍 #
$
∑%&#$ {𝑌% 1 − 𝑌% 0 } = #

$
𝕍(𝑌% 1 − 𝑌% 0 )

• So 𝕍' �̂�12! = 3&'

$&
+ 3(

'

$(
  exactly the same as in two-sample testing

• In two-sample testing, we assume that observed outcome 𝑌% are i.i.d. in the treatment 
group and 𝑌% are i.i.d. in the control group

• Under complete randomization, 𝑌% = 𝑌% 𝑊%  are not i.i.d. even with the treatment/control 
group because 𝑊% are negatively correlated across 𝑖



Construct confidence intervals for 𝜏!" or 𝜏"# 

• We have the same estimator �̂�!"# and the same variance approximation of �̂�<=>

D𝕍 �̂�12! =
𝑠()

𝑁(
+
𝑠*)

𝑁*
no matter we are interested about SATE 𝜏>@ or PATE 𝜏@A

• When 𝑁 is large enough, we can approximate the distribution of �̂�<=> by a normal distribution

• Then the 95% CI for either 𝜏>@ or 𝜏@A is
[�̂�12! − 1.96× D𝕍 �̂�12! , �̂�12! + 1.96× D𝕍 �̂�12! ]
same as what we had earlier



Hypothesis testing for 𝜏!" or 𝜏"# 

• We have the same estimator �̂�!"# and the same variance approximation of �̂�<=>

D𝕍 �̂�12! =
𝑠()

𝑁(
+
𝑠*)

𝑁*
no matter we are interested about SATE 𝜏>@ or PATE 𝜏@A

• When 𝑁 is large enough, we can approximate the distribution of �̂�<=> by a normal distribution

• When can test for the null hypothesis 𝑯𝟎: 𝝉𝐟𝒔 = 𝟎 or 𝑯𝟎: 𝝉𝐬𝐩 = 𝟎 

• The t-statistics: 𝑡 = 9:*+,

;𝕍 9:*+,

• Under 𝐻- and when 𝑁 is large, we have 𝑡 approximately follows a 𝑁(0, 1)	distribution 
• Two-sided p-value: 2(1 − 𝜙(|𝑡|))



Application to the Duflo-Hanna-Ryan data

Confidence interval for each of the four outcomes:



Application to the Duflo-Hanna-Ryan data
Analysis on two different subgroups: 
• Check if the treatment effect is the same for the subset of schools with 0 proportion of students 

attending the exam before treatment, and for the subset of other schools
• Conditional on the assignment results of other groups, within each subgroup we still have 

complete randomization of assignments
• For more explanations, wait until the later lecture on post-stratification



Fisher v.s. Neyman

• Like Fisher, Neyman proposed randomization-based inference
 
• Unlike Fisher, 
• estimands are average treatment effects 
• heterogenous treatment effects are allowed 
• population as well as sample inference is possible 
• asymptotic approximation is required for inference

• Fisher’s approach can easily be applied to deal with any randomization mechanism in 
an experiment, but it can be much harder for Neyman’s approach


