Lecture 5 Neyman's repeated sampling approach for completely randomized experiments

Outline

- Neyman's repeated sampling approach
 - Motivation
 - Variance calculation
 - CI and hypothesis testing
- Fisher VS Neyman
- Suggested reading: Imbens and Rubin Chapter 6, Peng's book Chapter 4

Motivation

- Limitations of the Fisher's randomization inference
 - Do not allow heterogeneity of causal effects across individuals
 - Do not have inference for the population
- Completely randomized experiments: can we use two sample test?
- Neyman's approach
 - Allow heterogeneity of causal effects across individuals
 - Focus on estimation and inference for the average treatment effect: either just for the *N* samples or for the whole population (PATE)
 - Repeated sampling: randomization distribution of assignment vector W, and sampling generated by drawing from the population units if inferring PATE

Example: Duflo-Hanna-Ryan teacher-incentive experiment

- Conducted in rural India, designed to study the effect of financial incentives on teacher performance
- In total N = 107 single-teacher schools, 53 schools are randomly chosen and are given a salary that's tied to their attendance
- One outcome: open (proportion of times the school is open during a random visit)

	Variable	Control (1	$V_{\rm c} = 54)$	Treated ($N_{\rm t} = 53$)			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00
	pctpostwritten	0.47	(0.19)	0.52	(0.23)	0.05	0.92
	written	0.92	(0.45)	1.09	(0.42)	0.07	2.22
	written_all	0.46	(0.32)	0.60	(0.39)	0.04	1.43

 Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Example: Duflo-Hanna-Ryan teacher-incentive experiment

Standard two-sample test:

$$\hat{\tau}^{\rm dif} = 0.80 - 0.58 = 0.22$$

$$s.\,e. = \sqrt{\frac{0.19^2}{54} + \frac{0.13^2}{53}} \approx 0.032$$

95% CI: [0.22 - 1.96 * 0.032, 0.22 + 1.96 * 0.032]

 Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

	Variable	Control (1	$V_{\rm c} = 54)$	Treated ($N_{\rm t} = 53$)			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00

• This calculation ignores the randomization procedure of the treatment assignment

• Can we justify this standard difference-in-means analysis from the randomization perspective?

Estimation of the sample average treatment effect

- Causal estimand: SATE = $\tau_{fs} = \frac{1}{N} \sum_{i=1}^{N} \{Y_i(1) Y_i(0)\}$ for the sampled N units
- Difference-in-means estimator:

$$\hat{\tau}^{\mathrm{dif}} = \overline{Y}_{\mathrm{t}}^{\mathrm{obs}} - \overline{Y}_{\mathrm{c}}^{\mathrm{obs}}$$

where
$$\overline{Y}_{c}^{obs} = \frac{1}{N_{c}} \sum_{i:W_{i}=0} Y_{i}^{obs}$$
 and $\overline{Y}_{t}^{obs} = \frac{1}{N_{t}} \sum_{i:W_{i}=1} Y_{i}^{obs}$

• Under complete randomization (random W) and treat the potential outcomes as fixed (fixed $Y(0) = \{Y_i(0), i = 1, \dots, N\}$ and $Y(1) = \{Y_i(1), i = 1, \dots, N\}$), this estimator is unbiased

$$\mathbb{E}_{W}\left[\hat{\tau}^{\text{dif}} \middle| \mathbf{Y}(0), \mathbf{Y}(1)\right] = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\mathbb{E}_{W}[W_{i}] \cdot Y_{i}(1)}{N_{t}/N} - \frac{\mathbb{E}_{W}[1 - W_{i}]) \cdot Y_{i}(0)}{N_{c}/N} \right)$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(Y_{i}(1) - Y_{i}(0) \right) = \tau_{\text{fs}}.$$

First, we can re-write $\hat{\tau}^{dif}$:

$$\begin{aligned} \hat{\tau}^{dif} &= \overline{Y_t}^{obs} - \overline{Y_c}^{obs} \\ &= \frac{1}{N_t} \sum_{i:W_i=1} Y_i^{obs} - \frac{1}{N_c} \sum_{i:W_i=0} Y_i^{obs} \\ &= \frac{1}{N_t} \sum_{i:W_i=1} W_i Y_i(1) - \frac{1}{N_c} \sum_{i:W_i=0} (1 - W_i) Y_i(0) \\ &= \frac{1}{N} \sum_{i=1}^N \left(\frac{N}{N_t} W_i Y_i(1) - \frac{N}{N_c} (1 - W_i) Y_i(0) \right) \end{aligned}$$

And now we can take an expectation:

$$E(\hat{\tau}^{dif}) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_t} E(W_i) Y_i(1) - \frac{N}{N_c} E(1 - W_i) Y_i(0) \right)$$

= $\frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_t} \frac{N_t}{N} Y_i(1) - \frac{N}{N_c} \frac{N_c}{N} Y_i(0) \right)$
= $\frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0))$
= τ

Calculate the variance of the estimator

- Causal estimand: SATE = $\tau_{fs} = \frac{1}{N} \sum_{i=1}^{N} \{Y_i(1) Y_i(0)\}$ for the sampled N units
- Difference-in-means estimator: $\hat{\tau}^{\text{dif}} = \overline{Y}_{t}^{\text{obs}} \overline{Y}_{c}^{\text{obs}}$
- Under complete randomization and fixed potential outcomes, we can also calculate the variance of $\hat{\tau}^{dif}$ (if you are interested in the proof, see Appendix A of Chapter 6 in Rubin's book or Section 4.3 in Peng's book)

$$V_W[\hat{\tau}^{\text{dif}}|Y(0), Y(1)] = \frac{S_c^2}{N_c} + \frac{S_t^2}{N_t} - \frac{S_{ct}^2}{N}$$

where

$$S_{c}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(0) - \overline{Y}(0))^{2}, \text{ and } S_{t}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - \overline{Y}(1))^{2}$$

$$S_{ct}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - (\overline{Y}(1) - \overline{Y}(0)))^{2}$$

$$= \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - \tau_{fs})^{2}.$$

Sample variance of $Y_i(0)$ and $Y_i(1)$

Sample variance of the unit-level treatment effects

Some explanation of the variance

$$V_W[\hat{\tau}^{\text{dif}}|\boldsymbol{Y}(0), \boldsymbol{Y}(1)] = \frac{S_c^2}{N_c} + \frac{S_t^2}{N_t} - \frac{S_{ct}^2}{N}$$

- Where does the randomness come from? Treatment assignment
 - Potential outcomes are fixed (conditioned on)
- How is it different from the classical variance formula of $\hat{\tau}^{\mathrm{dif}}$?
 - Classical formula treats Y_i i.i.d. within group and the group indicators W_i fixed
- How is it different from the setting in Fisher's randomization test?
 - The formula allows for arbitrary treatment effect sizes and heterogeneity
 - This formula only works for completely randomized experiment
- How to estimate these quantifies with observed variables?

Conservative approximation of the variance of the estimator

•
$$\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|Y(0),Y(1)] = \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} - \frac{S_{ct}^{2}}{N}$$

where
 $S_{c}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(0) - \overline{Y}(0))^{2}$, and $S_{t}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - \overline{Y}(1))^{2}$
 $S_{ct}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - (\overline{Y}(1) - \overline{Y}(0)))^{2}$
 $= \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - \tau_{fs})^{2}$.
Sample variance of the unit-level treatment effects

Estimate S_c^2 and S_t^2 by sample variance of observed outcomes

$$s_c^2 = \frac{\sum_{i:W_i=0} (Y_i^{\text{obs}} - \bar{Y}_c^{\text{obs}})^2}{N_c - 1}, s_c^2 = \frac{\sum_{i:W_i=1} (Y_i^{\text{obs}} - \bar{Y}_t^{\text{obs}})^2}{N_t - 1}$$

unit-level

- S_{ct}^2 is not identifiable
 - No heterogeneity of treatment effects across individuals $S_{ct}^2 = 0$
 - In general, $S_{ct}^2 \ge 0$ though the exact value is unknown

Conservative approximation of the variance of the estimator

•
$$\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|Y(0),Y(1)] = \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} - \frac{S_{ct}^{2}}{N}$$

where
 $S_{c}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(0) - \overline{Y}(0))^{2}$, and $S_{t}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - \overline{Y}(1))^{2}$
 $S_{ct}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - (\overline{Y}(1) - \overline{Y}(0)))^{2}$
 $= \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i}(1) - Y_{i}(0) - \tau_{fs})^{2}$.
Sample variance of the unit-level treatment effects

• A conservative estimator of $\operatorname{Var}_{W}\left[\hat{\tau}^{\operatorname{dif}}|\boldsymbol{Y}(0),\boldsymbol{Y}(1)\right]$ $\mathbb{V}_{W}\left[\hat{\tau}^{\operatorname{dif}}|\boldsymbol{Y}(0),\boldsymbol{Y}(1)\right] \leq \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} = \mathbb{E}_{W}\left[\frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}}\right]|\boldsymbol{Y}(0),\boldsymbol{Y}(1)\right]$

Neyman's estimator of the variance, same as *s.e.* on slide 5

Estimation of the population average treatment effect

- Causal estimand: $PATE = \tau_{sp} = \mathbb{E}(Y_i(1) Y_i(0)) = \mathbb{E}(SATE) = \mathbb{E}(\tau_{fs})$
- We assume that $(Y_i(0), Y_i(1))$ are jointly i.i.d samples from a super population with variance σ_c^2 and σ_s^2
- We still use difference-in-means estimator:

$$\hat{\tau}^{\mathrm{dif}} = \overline{Y}_{\mathrm{t}}^{\mathrm{obs}} - \overline{Y}_{\mathrm{c}}^{\mathrm{obs}}$$

- $\hat{\tau}^{\text{dif}}$ is still unbiased for τ_{sp} : $\mathbb{E}(\hat{\tau}^{\text{dif}}) = \mathbb{E}(\mathbb{E}_{W}[\hat{\tau}^{\text{dif}}|Y(0),Y(1)]) = \mathbb{E}(\tau_{\text{fs}}) = \tau_{\text{sp}}$
- The variance of $\hat{\tau}^{dif}$ (variance decomposition formula):
 - Check Wikipedia if you do not know the variance decomposition formula <u>https://en.wikipedia.org/wiki/Law_of_total_variance</u>

 $\mathbb{V}(\hat{\tau}^{\mathrm{dif}}) = \mathbb{E}(\mathbb{V}_{W}[\hat{\tau}^{\mathrm{dif}}|\boldsymbol{Y}(0),\boldsymbol{Y}(1)]) + \mathbb{V}(\mathbb{E}_{W}[\hat{\tau}^{\mathrm{dif}}|\boldsymbol{Y}(0),\boldsymbol{Y}(1)])$

Variance calculation for the population

$$\mathbb{V}(\hat{\tau}^{\mathrm{dif}}) = \mathbb{E}(\mathbb{V}_{W}[\hat{\tau}^{\mathrm{dif}}|\boldsymbol{Y}(0),\boldsymbol{Y}(1)]) + \mathbb{V}(\mathbb{E}_{W}[\hat{\tau}^{\mathrm{dif}}|\boldsymbol{Y}(0),\boldsymbol{Y}(1)])$$

• $\mathbb{V}_{W}[\hat{\tau}^{dif}|Y(0),Y(1)] = \frac{S_{c}^{2}}{N_{c}} + \frac{S_{t}^{2}}{N_{t}} - \frac{S_{ct}^{2}}{N}$, with $\mathbb{E}(S_{c}^{2}) = \sigma_{c}^{2}, \mathbb{E}(S_{t}^{2}) = \sigma_{t}^{2}, \mathbb{E}(S_{ct}^{2}) = \mathbb{V}(Y_{i}(1) - Y_{i}(0))$

•
$$\mathbb{V}(\mathbb{E}_{W}[\hat{\tau}^{\text{dif}}|\boldsymbol{Y}(0),\boldsymbol{Y}(1)]) = \mathbb{V}(\tau_{\text{fs}}) = \mathbb{V}(\frac{1}{N}\sum_{i=1}^{N}\{Y_{i}(1) - Y_{i}(0)\}) = \frac{1}{N}\mathbb{V}(Y_{i}(1) - Y_{i}(0))$$

- So $\mathbb{V}_W(\hat{\tau}^{\text{dif}}) = \frac{\sigma_c^2}{N_c} + \frac{\sigma_t^2}{N_t}$ exactly the same as in two-sample testing
 - In two-sample testing, we assume that observed outcome Y_i are i.i.d. in the treatment group and Y_i are i.i.d. in the control group
 - Under complete randomization, $Y_i = Y_i(W_i)$ are not i.i.d. even with the treatment/control group because W_i are negatively correlated across i

Construct confidence intervals for $au_{ m fs}$ or $au_{ m sp}$

• We have the same estimator $\hat{\tau}^{
m dif}$ and the same variance approximation of $\hat{ au}^{
m dif}$

$$\widehat{\mathbb{V}}(\widehat{\tau}^{\mathrm{dif}}) = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}$$

no matter we are interested about SATE $au_{
m fs}$ or PATE $au_{
m sp}$

- When N is large enough, we can approximate the distribution of $\hat{\tau}^{dif}$ by a normal distribution
- Then the 95% CI for either $\tau_{\rm fs}$ or $\tau_{\rm sp}$ is $[\hat{\tau}^{\rm dif} - 1.96 \times \sqrt{\widehat{\mathbb{V}}(\hat{\tau}^{\rm dif})}, \hat{\tau}^{\rm dif} + 1.96 \times \sqrt{\widehat{\mathbb{V}}(\hat{\tau}^{\rm dif})}]$ same as what we had earlier

Hypothesis testing for $au_{ m fs}$ or $au_{ m sp}$

• We have the same estimator $\hat{\tau}^{\mathrm{dif}}$ and the same variance approximation of $\hat{\tau}^{\mathrm{dif}}$

$$\widehat{\mathbb{V}}(\widehat{\tau}^{\mathrm{dif}}) = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}$$

no matter we are interested about SATE $au_{
m fs}$ or PATE $au_{
m sp}$

- When N is large enough, we can approximate the distribution of $\hat{\tau}^{dif}$ by a normal distribution
- When can test for the null hypothesis H_0 : $au_{\mathrm{f}s} = 0$ or H_0 : $au_{\mathrm{sp}} = 0$
- The t-statistics: $t = \frac{\hat{\tau}^{\text{dif}}}{\sqrt{\widehat{\mathbb{V}}(\hat{\tau}^{\text{dif}})}}$
- Under H_0 and when N is large, we have t approximately follows a N(0, 1) distribution
- Two-sided p-value: $2(1 \phi(|t|))$

Application to the Duflo-Hanna-Ryan data

	Variable	Control (1	$V_{\rm c} = 54)$	Treated ($N_{\rm t} = 53$)			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00
	pctpostwritten	0.47	(0.19)	0.52	(0.23)	0.05	0.92
	written	0.92	(0.45)	1.09	(0.42)	0.07	2.22
	written_all	0.46	(0.32)	0.60	(0.39)	0.04	1.43

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Confidence interval for each of the four outcomes:

τ	(s. e.)	95% C.I.
0.22	(0.03)	(0.15,0.28)
0.05	(0.04)	(-0.03, 0.13)
0.17	(0.08)	(0.00, 0.34)
0.14	(0.07)	(0.00,0.28)

Application to the Duflo-Hanna-Ryan data

Analysis on two different subgroups:

- Check if the treatment effect is the same for the subset of schools with 0 proportion of students attending the exam before treatment, and for the subset of other schools
- Conditional on the assignment results of other groups, within each subgroup we still have complete randomization of assignments
 - For more explanations, wait until the later lecture on post-stratification

Variable	pctpre = 0 $(N = 40)$			pctprewritten > 0 ($N = 67$)			Difference		
	$\hat{ au}$	$\widehat{(s.e.)}$	95% C.I.	$\hat{\tau}$	$\widehat{(s.e.)}$	95% C.I.	EST	$\widehat{(s.e.)}$	95% C.I.
open	0.23	(0.05)	(0.14,0.32)	0.21	(0.04)	(0.13,0.29)	0.02	(0.06)	(-0.10,0.14)
pctpost written	-0.004	(0.06)	(-0.16,0.07)	0.11	(0.05)	(0.01,0.21)	-0.15	(0.08)	(-0.31,0.00)
written	0.20	(0.10)	(0.00, 0.40)	0.18	(0.10)	(-0.03,0.38)	0.03	(0.15)	(-0.26, 0.31)
written _all	0.04	(0.07)	(-0.10,0.19)	0.22	(0.09)	(0.04,0.40)	-0.18	(0.12)	(-0.41,0.05)

Fisher v.s. Neyman

- Like Fisher, Neyman proposed randomization-based inference
- Unlike Fisher,
 - estimands are average treatment effects
 - heterogenous treatment effects are allowed
 - population as well as sample inference is possible
 - asymptotic approximation is required for inference
- Fisher's approach can easily be applied to deal with any randomization mechanism in an experiment, but it can be much harder for Neyman's approach