Lecture 5 Neyman's repeated sampling approach for completely randomized experiments

Outline

- Neyman's repeated sampling approach
	- Motivation
	- Variance calculation
	- CI and hypothesis testing
- Fisher VS Neyman
- Suggested reading: Imbens and Rubin Chapter 6, Peng's book Chapter 4

Motivation

- Limitations of the Fisher's randomization inference
	- Do not allow heterogeneity of causal effects across individuals
	- Do not have inference for the population
- Completely randomized experiments: can we use two sample test?
- Neyman's approach
	- Allow heterogeneity of causal effects across individuals
	- Focus on estimation and inference for the average treatment effect: either just for the N samples or for the whole population (PATE)
	- Repeated sampling: randomization distribution of assignment vector W , and sampling generated by drawing from the population units if inferring PATE

Example: Duflo-Hanna-Ryan teacher-incentive experiment

- Conducted in rural India, designed to study the effect of financial incentives on teacher performance
- In total $N = 107$ single-teacher schools, 53 schools are randomly chosen and are given a salary that's tied to their attendance
- One outcome: open (proportion of times the school is open during a random visit)

	Variable	Control ($N_c = 54$)		Treated $(Nt = 53)$			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00
	pctpostwritten	0.47	(0.19)	0.52	(0.23)	0.05	0.92
	written	0.92	(0.45)	1.09	(0.42)	0.07	2.22
	written_all	0.46	(0.32)	0.60	(0.39)	0.04	1.43

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Example: Duflo-Hanna-Ryan teacher-incentive experiment

Standard two-sample test:

$$
\hat{\tau}^{\text{dif}}=0.80-0.58=0.22
$$

$$
s.e. = \sqrt{\frac{0.19^2}{54} + \frac{0.13^2}{53}} \approx 0.032
$$

 $95\% CI: [0.22 - 1.96 * 0.032, 0.22 + 1.96 * 0.032]$

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

	Variable			Control ($N_c = 54$) Treated ($N_t = 53$)			
				Average (S.D.) Average (S.D.) Min Max			
Pre-treatment	pctprewritten	0.19		(0.19) 0.16	(0.17) 0.00 0.67		
Post-treatment	open	0.58	(0.19)	$0.80\,$	(0.13)	$0.00\,$	1.00

- This calculation ignores the randomization procedure of the treatment assignment
- Can we justify this standard difference-in-means analysis from the randomization perspective?

Estimation of the sample average treatment effect

- Causal estimand: $\text{SATE} = \tau_{\text{fs}} =$ $\frac{1}{N}\sum_{i=1}^N \{Y_i(1) - Y_i(0)\}$ for the sampled N units
- Difference-in-means estimator:

$$
\hat{\tau}^{\rm dif} = \overline{Y}_{t}^{\rm obs} - \overline{Y}_{c}^{\rm obs}.
$$

where
$$
\overline{Y}_{c}^{\text{obs}} = \frac{1}{N_c} \sum_{i: W_i = 0} Y_i^{\text{obs}}
$$
 and $\overline{Y}_{t}^{\text{obs}} = \frac{1}{N_t} \sum_{i: W_i = 1} Y_i^{\text{obs}}$

Under complete randomization (random W) and treat the potential outcomes as fixed (fixed $Y(0) = {Y_i(0), i = 1, ..., N}$ and $Y(1) = {Y_i(1), i = 1, ..., N}$, this estimator is unbiased

$$
\mathbb{E}_{W} \left[\hat{\tau}^{\text{dif}} \middle| \mathbf{Y}(0), \mathbf{Y}(1) \right] = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\mathbb{E}_{W}[W_{i}] \cdot Y_{i}(1)}{N_{t}/N} - \frac{\mathbb{E}_{W}[1 - W_{i}]) \cdot Y_{i}(0)}{N_{c}/N} \right)
$$

$$
= \frac{1}{N} \sum_{i=1}^{N} \left(Y_{i}(1) - Y_{i}(0) \right) = \tau_{\text{fs}}.
$$

First, we can re-write $\hat{\tau}^{dif}\!$:

$$
\hat{\tau}^{dif} = \overline{Y_t}^{obs} - \overline{Y_c}^{obs}
$$
\n
$$
= \frac{1}{N_t} \sum_{i:W_i=1} Y_i^{obs} - \frac{1}{N_c} \sum_{i:W_i=0} Y_i^{obs}
$$
\n
$$
= \frac{1}{N_t} \sum_{i:W_i=1} W_i Y_i(1) - \frac{1}{N_c} \sum_{i:W_i=0} (1 - W_i) Y_i(0)
$$
\n
$$
= \frac{1}{N} \sum_{i=1}^N \left(\frac{N}{N_t} W_i Y_i(1) - \frac{N}{N_c} (1 - W_i) Y_i(0) \right)
$$

And now we can take an expectation:

$$
E(\hat{\tau}^{dif}) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_t} E(W_i) Y_i(1) - \frac{N}{N_c} E(1 - W_i) Y_i(0) \right)
$$

$$
= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{N}{N_t} \frac{N_t}{N} Y_i(1) - \frac{N}{N_c} \frac{N_c}{N} Y_i(0) \right)
$$

$$
= \frac{1}{N} \sum_{i=1}^{N} \left(Y_i(1) - Y_i(0) \right)
$$

$$
= \tau
$$

Calculate the variance of the estimator

- Causal estimand: $\text{SATE} = \tau_{\text{fs}} =$ $\frac{1}{N}\sum_{i=1}^N \{Y_i(1) - Y_i(0)\}$ for the sampled N units
- Difference-in-means estimator: $\hat{\tau}^{\rm dif} = \overline{Y}_{t}^{\rm obs} - \overline{Y}_{c}^{\rm obs}$
- Under complete randomization and fixed potential outcomes, we can also calculate the $\mathsf{variance\ of\ } \hat\tau^{\rm dif}$ (if you are interested in the proof, see Appendix A of Chapter 6 in Rubin's book or Section 4.3 in Peng's book)

$$
V_{W}[\hat{\tau}^{\text{dif}}|Y(0), Y(1)] = \frac{S_c^2}{N_c} + \frac{S_t^2}{N_t} - \frac{S_{ct}^2}{N}
$$

where
\n
$$
S_c^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(0) - \overline{Y}(0))^2, \text{ and } S_t^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - \overline{Y}(1))^2
$$
\n**Sample variance**
\n
$$
S_{ct}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - (\overline{Y}(1) - \overline{Y}(0)))^2
$$
\n**Sample variance**
\n**Sample variance**
\n**Example variance**
\n**trreatment effects**

of $Y_i(0)$ and $Y_i(1)$

Sample variance of the unit-level treatment effects

Some explanation of the variance

$$
V_W[\hat{\tau}^{\text{dif}}|Y(0), Y(1)] = \frac{S_c^2}{N_c} + \frac{S_t^2}{N_t} - \frac{S_{ct}^2}{N}
$$

- Where does the randomness come from? Treatment assignment
	- Potential outcomes are fixed (conditioned on)
- How is it different from the classical variance formula of $\hat{\tau}^{\mathrm{dif}}$?
	- Classical formula treats Y_i i.i.d. within group and the group indicators W_i fixed
- How is it different from the setting in Fisher's randomization test?
	- The formula allows for arbitrary treatment effect sizes and heterogeneity
	- This formula only works for completely randomized experiment
- How to estimate these quantifies with observed variables?

Conservative approximation of the variance of the estimator

•
$$
\mathbb{V}_W[\hat{\tau}^{\text{dif}}|Y(0), Y(1)] = \frac{S_c^2}{N_c} + \frac{S_t^2}{N_t} - \frac{S_{ct}^2}{N}
$$

\nwhere
\n
$$
S_c^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(0) - \overline{Y}(0))^2, \text{ and } S_t^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(1) - \overline{Y}(1))^2
$$
\n
$$
S_{ct}^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(1) - Y_i(0) - (\overline{Y}(1) - \overline{Y}(0)))^2
$$
\nSample variance
\n
$$
= \frac{1}{N-1} \sum_{i=1}^N (Y_i(1) - Y_i(0) - \tau_{fs})^2.
$$
\nSample variance
\n
$$
= \frac{1}{N-1} \sum_{i=1}^N (Y_i(1) - Y_i(0) - \tau_{fs})^2.
$$

• Estimate S_c^2 and S_t^2 by sample variance of observed outcomes

$$
s_c^2 = \frac{\sum_{i:W_i=0} (Y_i^{\text{obs}} - \bar{Y}_c^{\text{obs}})^2}{N_c - 1}, s_c^2 = \frac{\sum_{i:W_i=1} (Y_i^{\text{obs}} - \bar{Y}_t^{\text{obs}})^2}{N_t - 1}
$$

- S_{ct}^2 is not identifiable
	- No heterogeneity of treatment effects across individuals $S_{ct}^2 = 0$
	- In general, $S_{ct}^2 \geq 0$ though the exact value is unknown

Conservative approximation of the variance of the estimator

•
$$
\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|Y(0), Y(1)] = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t} - \frac{s_{ct}^2}{N}
$$

\nwhere
\n
$$
S_c^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(0) - \overline{Y}(0))^2, \text{ and } S_t^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - \overline{Y}(1))^2
$$
\n
$$
S_{ct}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - (\overline{Y}(1) - \overline{Y}(0)))^2
$$
\nSample variance
\n
$$
= \frac{1}{N-1} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - \tau_{fs})^2.
$$
\nSample variance
\nof the unit-level treatment effects

• A conservative estimator of $\text{Var}_W[\hat{\tau}^{\text{dif}}|Y(0),Y(1)]$ $\mathbb{V}_W\bigl[\hat{\tau}^{\text{dif}}|Y(0),Y(1)\bigr] \leq$ S_c^2 N_c + S_t^2 N_t $=$ \mathbb{E}_W s_c^2 N_c $+$ s_t^2 N_t $| Y(0), Y(1)$

> Neyman's estimator of the variance, same as *s.e.* on slide 5

Estimation of the population avera

- Causal estimand: $\text{PATE} = \tau_{sp} = \mathbb{E}(Y_i(1) Y_i(0)) = \mathbb{E}(\text{SAT})$
- We assume that ($Y_i(0)$, $Y_i(1)$ [\) are jointly i.i.d](https://en.wikipedia.org/wiki/Law_of_total_variance) samples from a σ_c^2 and σ_s^2
- We still use difference-in-means estimator:

$$
\hat{\tau}^{\rm dif} = \overline{Y}_{t}^{\rm obs} - \overline{Y}_{c}^{\rm obs}
$$

- $\hat{\tau}^{\rm dif}$ is still unbiased for $\tau_{\rm sp}$: $\mathbb{E}\big(\widehat{\tau}^{\rm dif}\big) = \mathbb{E}(\mathbb{E}_W[\hat{\tau}^{\rm dif}|Y(0),Y(1)])$
- The variance of $\hat{\tau}^{\text{dif}}$ (variance decomposition formula):
	- Check Wikipedia if you do not know the variance decom https://en.wikipedia.org/wiki/Law_of_total_variance

$$
\mathbb{V}(\hat{\tau}^{\text{dif}}) = \mathbb{E}\big(\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|Y(0), Y(1)]\big) + \mathbb{V}\big(\mathbb{E}_{W}[\hat{\tau}^{\text{dif}}
$$

Variance calculation for the population

$$
\mathbb{V}(\hat{\tau}^{\text{dif}}) = \mathbb{E}\big(\mathbb{V}_{W}[\hat{\tau}^{\text{dif}}|Y(0), Y(1)]\big) + \mathbb{V}\big(\mathbb{E}_{W}[\hat{\tau}^{\text{dif}}|Y(0), Y(1)]\big)
$$

• $\mathbb{V}_W[\hat{\tau}^{\text{dif}}|Y(0),Y(1)]=\frac{S_c^2}{N}$ N_c $+\frac{S_t^2}{N}$ N_t $-\frac{S_{ct}^2}{N}$ $\frac{\partial ct}{N}$, with $\mathbb{E}(S_c^2) = \sigma_c^2$, $\mathbb{E}(S_t^2) = \sigma_t^2$, $\mathbb{E}(S_{ct}^2) = \mathbb{V}(Y_i(1) - Y_i(0))$

•
$$
\mathbb{V}\big(\mathbb{E}_{W}\big[\hat{\tau}^{\text{dif}}|Y(0),Y(1)\big]\big) = \mathbb{V}(\tau_{\text{fs}}) = \mathbb{V}\big(\frac{1}{N}\sum_{i=1}^{N}\{Y_{i}(1) - Y_{i}(0)\}\big) = \frac{1}{N}\mathbb{V}(Y_{i}(1) - Y_{i}(0))
$$

- So $\mathbb{V}_W(\hat{\tau}^{\text{dif}}) = \frac{\sigma_c^2}{N}$ N_c $+\frac{\sigma_t^2}{v}$ N_t exactly the same as in two-sample testing
	- In two-sample testing, we assume that observed outcome Y_i are i.i.d. in the treatment group and Y_i are i.i.d. in the control group
	- Under complete randomization, $Y_i = Y_i(W_i)$ are not i.i.d. even with the treatment/control group because W_i are negatively correlated across i

Construct confidence intervals for τ_{fs} or τ_{sp}

• We have the same estimator $\hat{\tau}^{\rm dif}$ and the same variance approximation of $\hat{\tau}^{\rm dif}$

$$
\widehat{\mathbb{V}}(\hat{\tau}^{\text{dif}}) = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}
$$

no matter we are interested about SATE τ_{fs} or PATE τ_{sp}

- When N is large enough, we can approximate the distribution of $\hat{\tau}^{\text{dif}}$ by a normal distribution
- Then the 95% CI for either τ_{fs} or τ_{sp} is $[\hat{\tau}^{\text{dif}}-1.96\times\sqrt{\hat{V}(\hat{\tau}^{\text{dif}})}, \hat{\tau}^{\text{dif}}+1.96\times\sqrt{\hat{V}(\hat{\tau}^{\text{dif}})}]$ same as what we had earlier

Hypothesis testing for τ_{fs} or τ_{sp}

• We have the same estimator $\hat{\tau}^{\rm dif}$ and the same variance approximation of $\hat{\tau}^{\rm dif}$

$$
\widehat{\mathbb{V}}(\hat{\tau}^{\text{dif}}) = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}
$$

no matter we are interested about SATE τ_{fs} or PATE τ_{sp}

- When N is large enough, we can approximate the distribution of $\hat{\tau}^{\text{dif}}$ by a normal distribution
- When can test for the null hypothesis $\bm{H_0}$: $\bm{\tau_{fs}}=\bm{0}$ or $\bm{H_0}$: $\bm{\tau_{sp}}=\bm{0}$
- The t-statistics: $t =$ $\widehat{\tau}^{\text{dif}}$ $\widehat{\mathbb{V}}(\widehat{\tau}^{\text{dif}}% (\widehat{\tau},\widehat{\tau}))$
- Under H_0 and when N is large, we have t approximately follows a $N(0, 1)$ distribution
- Two-sided p-value: $2(1 \phi(|t|))$

Application to the Duflo-Hanna-Ryan data

	Variable	Control ($N_c = 54$)		Treated $(Nt = 53)$			
		Average	(S.D.)	Average	(S.D.)	Min	Max
Pre-treatment	pctprewritten	0.19	(0.19)	0.16	(0.17)	0.00	0.67
Post-treatment	open	0.58	(0.19)	0.80	(0.13)	0.00	1.00
	pctpostwritten	0.47	(0.19)	0.52	(0.23)	0.05	0.92
	written	0.92	(0.45)	1.09	(0.42)	0.07	2.22
	written_all	0.46	(0.32)	0.60	(0.39)	0.04	1.43

Table 6.1. Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Observed Data

Confidence interval for each of the four outcomes:

Application to the Duflo-Hanna-Ryan data

Analysis on two different subgroups:

- Check if the treatment effect is the same for the subset of schools with 0 proportion of students attending the exam before treatment, and for the subset of other schools
- Conditional on the assignment results of other groups, within each subgroup we still have complete randomization of assignments
	- For more explanations, wait until the later lecture on post-stratification

Fisher v.s. Neyman

- Like Fisher, Neyman proposed randomization-based inference
- Unlike Fisher,
	- estimands are average treatment effects
	- heterogenous treatment effects are allowed
	- population as well as sample inference is possible
	- asymptotic approximation is required for inference
- Fisher's approach can easily be applied to deal with any randomization mechanism in an experiment, but it can be much harder for Neyman's approach