Lecture 6
Regression for completely
randomized experiment



Outline

Using regression with no covariates

Using regression with covariates adjustments

Using regression with covariates adjustments and interactions

The LRC-CPPT cholesterol data example

Suggested readings: Imbens and Rubin Chapter 7



Linear regression and causality

* Linear regression:
E(Y;|W;, X;) = a +yW; + B"X;

e Benefits of using linear regression:

* Adjust for confounding variables
* Not need for completely randomized experiments as pre-treatment covariates are not

confounded
* More accurate estimator if covariates explain part of the noise in the outcome
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Linear regression and causality

* Linear regression:
E(Y;|W;, X;) = a +yW; + B"X;

* Question:
* When can we interpret the coefficient(s) as causal effect?
* How can we do correct inference if we take into account the randomization procedure of
treatment assignments?

* Some critiques
* In completely randomized experiments, covariates are not confounders
 Why do we want to assume a linear model if we don’t need to?
* Model E(Y;|W;, X;) = a + yW; + BT X; assumes same causal effect for all levels of X;

“Experiments should be analyzed as experiments, not as observational studies”
---- David A. Freedman, 2006



The LRC-CPPT cholesterol data

* An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
e N = 337 patients are completely randomized
* Pre-treatment covariates: two cholesterol measurements before and after a suggestion of

low-cholesterol diet, both measurements taken prior to the random assignment
« cholp = 0.25 chol1 + 0.75 chol2

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N; =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 2470 4420
chol2 289.2 (24.1) 287.4 (21.4) 2240 435.0
cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0
chold —8.5 (10.8) —-334 (21.3) —1133 295

comp 74.5 (21.0) 59.9 (24.4) 0 1010




The LRC-CPPT cholesterol data

* An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
e N = 337 patients are completely randomized
* Post-treatment outcomes:

« cholf: post-treatment average cholesterol level
« chold = cholf — cholp

 comp: compliance rate, the percentage of individuals follow the treatment assignment

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N; =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 2470 4420
chol2 289.2 (24.1) 287.4 (21.4) 2240 435.0
cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0
chold —8.5 (10.8) —-334 (21.3) —1133 295

comp 74.5 (21.0) 59.9 (24.4) 0 1010




The LRC-CPPT cholesterol data

» Can we evaluate the drug effect by simply look at whether chold is positive or negative?
* No! The before-after comparison is NOT necessarily causal
* Even for the control group, chold is significantly negative

* The patient’s post-treatment cholesterol should be highly correlated with his/her pre-

treatment cholesterol level

 How do we evaluate the causal effect after “adjusting for the pre-treatment cholestero
e Adjust for pre-treatment cholesterol by regression

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N; =172) Treatment (Ny =165)
Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 442.0

chol2 289.2 (24.1) 287.4 (21.4) 224.0 4350

cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0

chold —8.5 (10.8) —334 (21.3) —113.3 295

comp 74.5 (21.0) 59.9 (24.4) 0 101.0
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Linear regression with no covariates

Neyman’s approach
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Causal interpretation of the linear model

Linear model on the potential outcomes
Y(W)=a+Tt,w+e =a+mw+g(w)
where E(¢;) = 0and g;(w) = & + (t; — D)w
* Not really an assumption if w only has two values
Y(0) = @ + ¢, ¥;,(D) = %(0) + 7

Assume that there is a super-population and the potential outcomes are i.i.d. samples
The observed outcomes Y; = W;Y;(1) + (1 — W;)Y;(0) are not i.i.d. samples under
complete randomization

Define PATE: T = [E(7;) = [E(Yl-(l) — Yi(O))
a = IE(YL-(O)) and [E(el-(w)) =0



Linear regression with no covariates

e Causal model on the potential outcomes
Y(W)=a+Tt,w+e =a+tw+gw)
where E(g;) = 0and g;(w) = ¢ + (1; — D)w

e |f the treatment is binary (w = 0,1), then the above model essentially has no
assumption on Y;(0) and Y;(1)

e |f the treatment is continuous, the model assumes a linear but heterogenous causal
effect on each individual

* How to estimate 7 from observed data?
* When does the above model imply the linear regression model on observed data?

YoPS = a + TW; + ¢



Linear regression with no covariates
Y(wW)=a+Ttw+¢e =a+tw+g(w)

We assume the following identification conditions

 Randomization of the treatment:
(Y(0),Y(1) Lw
e Satisfied in completely randomized experiments

* Then, E(Yi(W)) =E(Y;(W)|W; =w) = IE(Yl-ObS|Wi = W) =a+ 1w
* So this implies a regression model

YOoPS = o + W, + ¢
where & = gi(Wi) = 8; + (Ti — T)Wi

Randomization of
Linear model on the Treatment assignment
>
potential outcomes

e Whatis the correct statistical inference?




Linear regression with no covariates

regression model
YoPS = q + TW; + ¢
where & = gi(Wi) = 8; + (Ti — T)Wi

Follow the linear regression convention, we perform statistical inference conditional on
(Wy, -+, Wy)
e we treat assignment vectors as fixed

Random sampling of the units
* (£(0),¢&;(1)) are independent across i
* This implies that ¢; in the linear regression model are independent as W; are treated as
fixed
e But they may not follow the same distribution



Homoscedastic error assumption

Homoscedastic error assumption: V(g;(0)) = V(g (1)) = o

. ThenW(YiObS|Wi) = & = &;(W;) always has variance g2

 Under homoscedasticity, OLS estimates of the variance is

N N
2 2 _ (Ylpbs . YiObS) ,

where the estimated residual is &; = Yl-ObS —Y l."bs, and the predicted value f/iObS is

pobs _ acls if W; =0,
‘ a°s + 7o if W, = 1.

 Same as the standard linear regression approach



Heteroscedastic errors

 If we don’t want to assume V(g;(0)) = V(g;(1)), then the homoscedastic error
assumption fails
* ¢&; has the same distribution for W; = 0, and the same distribution for W; = 1

 We should use same variance within the treated and control group
 That leads to the variance estimator in Neyman'’s approach
* Thisis also called the Sandwich estimator that is robust to the violation of the

homoscedastic noise assumption in linear regression
* InR, it corresponds to Sandwich estimator with HC2 adjustment



Linear regression wit no covariates

To summarize the logic

We build a (linear) model on the potential outcomes

This model implies a linear regression model on the observed outcome if
(Y(0),Y(1) LW

The coefficient on WW; in the linear regression model is the average causal effect
(PATE)

The linear regression model treat W as fixed so it works for any randomization
assignment mechanism that satisfy (Y(0),Y(1)) L W

Noise in the linear regression model are independent as long as potential outcomes
are independent across units

 The OLS estimator estimator is always unbiased
* We can apply standard linear regression inference results if we assume
V(e (0)) = V(g (1)

* IfV(g(0)) # V(g (1)), we need to use the robust variance estimator



Linear regression with covariates adjustment

What are model assumptions on the potential outcomes that lead to
YiObS =a + TWi + ﬁTXi + &
a linear model on the observed outcome

Assumption 1: E(Y;(0)| X;) = a + BT X;
Assumption 2: CATE 7(x) = E(t;| X;= x) = 7 = PATE constant across levels of X;
* We can allow for heterogeneous causal effect but need E(t; — 7| X;) =0
(individual causal effects are independent from the pre-treatment covariates)

Then E(Y;(w)| X;) = E(Y;(0) + 1;w| X;) = a + ™w + BT X;

Unconfoundedness property:
(Y(0),Y(1) LW |X
E(YPPS|W; = w, X; = x) = E(Y;(W)|X; = x) = a + w + BTX;
 Statistical inference is conditional on both X; and W;



OLS with covariates adjustment

N
2
(Aols ~o0ls IBOIS) = arg min Z (YobS — YT W, Xz,B)

a.z,
'le

* The estimator fOIS is unbiased for the causal estimand T

* Even if the modelis incorrect (either the violation of E(Y;(0)| X;) = a + BT X; or 7 =
E(t;| X; = x) ), t° still converges to the PATE E(t;) under complete randomization

Efficiency gain from regression
* |f the modelis correct, we have
205y BV (DX} BV (O] X)) _ ot of
V(£°5) ~ + — +—
N; N, N N;
* If X; is predictive of the (potential) outcomes, we have a more accurate estimator

e If the linear model is incorrect, the efficiency might be lost
(Freedman 2008, Adv. Appl. Math.)




Estimate of the variance of £°! with covariates
adjustment

* Assume homoscedastic error assumption:
V(g (0)) = V(g (1) = a2 = V(Y*|w;, X;)

We can follow standard linear regression inference and estimate variance of 0ls 54

Sh 1 DL (YiObS —aoh — 78 — ,BOIS)
V omo — ) _
N (N — 1 — dim(X;)) W-(1-—W)

* The robust variance estimator (Sandwich estimator) without assuming
homoscedasticity

<rhetero __ 1

T NN —1-dimX)))
- 2
ngzl (Wi . W)2 : (Yl-ObS _ &ols _ '*ols Xz,BOlS)

(W-(1—W))°




Linear regression with covariates adjustment
and interactions

What if the assumption T = 7(x) = [E(7;| X; = x) constant across levels of X; is incorrect?

* 1 isstill the population average treatment effect
e Stillassume E(Y;(0)| X;) = a + BT X;

e ThenE(Y;(W)| X;) =EY;(0)+t;w| X)) =a+1tw+ BTX; + Yy (X;— X)w

* When does the above model imply the linear regression model with interactions on
observed data?
YiObS =a+tW; + ﬁTXi + )/T(Xi— )_()Wl + &
* Unconfoundedness property = check by yourself
* In completely randomized experiments, with the interaction terms, we can always
guarantee no efficiency loss even when the linear model is wrong (Peng’s book
section 6.2.2)



Results on the LRC-CPPT cholesterol data

* We estimate the PATE for both the post-treatment cholesterol level cholf and compliance

A considerable reduction of the variance of £°!S for cholf when we add the pre-treatment
cholesterol levels in the regression

Our goal is always estimating PATE even after “covariates adjustment”

In randomized experiments satisfying (Y(0),Y (1)) L W, adjusting for covariates or not,
our estimate of PATE is always valid, we only change the efficiency of our estimate

Covariates Effect of Assignment to Treatment on
Post-Cholesterol Level Compliance
7 (s.e.) 7 (s.e.)
No covariates —26.22 (3.93) —14.64 (3.51)
cholp —25.01 (2.60) —14.68 (3.51)
choll, chol2 —25.02 (2.59) —14.95 (3.50)

choll, chol2, interacted with W —25.04 (2.56) ~14.94 (3.49)




The LRC-CPPT cholesterol data

A bit explanation about compliance

* |f we compare between control and treatment group, we are evaluating the causal effect of
“being assigned”, not the causal effect of actually taking the drug

 Compliance lower in the treatment group possibly due to the side effect of the drug

e Can we just throw away individuals who do not follow the treatment and estimate the causal
effect of taking the drug based on the rest individuals? No

* Will discuss more about compliance in later lectures

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N, =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 2470 4420
chol2 289.2 (24.1) 287.4 (21.4) 224.0 435.0
cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0
chold —8.5 (10.8) —-334 (21.3) —1133 295

comp 74.5 (21.0) 59.9 (24.4) 0 101.0




Why do we use linear regression in randomized
experiments?

e Covariate adjustment can be used to improve efficiency in randomized
experiments
e Always add interaction terms (between each covariate and
treatment) to guarantee power improvement

* In completely randomized experiments
* No need to worry about model misspecification
* Treatment and covariates are independent



