
Lecture 7 
Stratified randomized 

experiments



Outline

• Stratified randomized experiment

• Fisher’s exact p-value

• Neyman’s repeated sampling approach

• Regression analysis

• Post stratification

• Suggested reading: Imbens and Rubin Chapter 9.1-9.6, Peng’s book Chapter 5 



STAR (Student-Teacher Achievement Ratio) Project in Tennessee
(Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

• What is STAR? (1985-1989) 
• A large-scale, four-year, longitudinal, experimental study of reduced 

class size
• One the historically most important educational investigations 
• Cost of about $12 million 

• Conclusion: small classes have an advantage over larger classes in 
reading and math in the early primary grades

• Why was STAR needed?
• Legislators and school administrators doubted the significance of 

smaller classes
• Conducted at the elementary-school level as this is where the 

foundation is laid for children’s success in school.
• The most credible study of class size



STAR (Student-Teacher Achievement Ratio) Project in Tennessee
(Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

• How is the experiment designed?
• Three levels of “treatment”: three types of 

classes
• All schools are invited to participate
• The study included 79 schools resulting 

in over 6,000 students per grade
• A school need to have a minimum of 57 students in kindergarden (at least one 

for each type of class)
• Once a school is admitted, a decision was made on the number of classes per arm

• Difference between Class Size and Pupil/Teacher Ratio
• The interventions were initiated as the students entered school in kindergarten 

and continued through third grade.



The project STAR example 
(Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

• Stratified randomization procedure
• potentially large differences in resources, teachers and students between schools

• Randomization within each school
• Students and teachers were randomly assigned to the one of the 3 arms
• The unit is a teacher in a class, instead of a student to avoid violation of no 

interference assumption

• Practical issues faced in real experiment
• Longitudinal experiment

• Schools may drop out of the project
• Classes may gain/lose students so that can become too small or too big

• Selection bias in students’ involvement
• Students’ parents were informed so may want their children to be in the smaller class



The project STAR example 
(Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

• Understanding the randomization procedure
• Two randomizations happen in the experiment

• Randomization of teachers
• Randomization of students

• Our causal analysis only relies on the randomization of teachers
• The treatment effect on a particular teacher in a particular school is comparing the 

test score of being randomly assigned to a type of class and the test score of being 
randomly assigned to another type of class

• The randomization of students helps interpretating our results
• Treatment effect between two arms can be explained by the classroom size difference 

instead of the systematic differences of students



• We focus on two 
arms (regular 
classes v.s. small 
classes) and 16 
schools that have 
at least two 
classes per arm 



Stratified randomized experiment
• Basic procedure: 

1. Blocking (Stratification): create groups of similar units based on pre-treatment covariates, 
let 𝐵! ∈ {1,⋯ , 𝐽} be the block indicator

2. Block (Stratified) randomization: completely randomize treatment assignment within each 
group 

• Blocking can improve the efficiency by minimizing the variance of the potential outcomes 
within each strata

“Block what you can and randomize what you cannot” 
                                                                 Box, et al. (2005). Statistics for Experimenters. 2nd eds. Wiley

• Assignment probability
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Compare treated v.s. control? Simpson’s paradox

• Compare the success rates of two treatment of kidney stores
• Treatment A: open surgery; treatment B: small puctures

• Large difference in treatment assignment probability across strata
• Small stone: assignment probability +,

+,-.,/
= 0.24

• Large stone: assignment probability is .01
.01-+/

= 0.77

• Compare within each strata and take a weighted average:
• True average causal effect: 83.2% − 78.2% ∶ 93% − 87% ×0.51	 − (73% − 	69%)×0.49	



Fisher’s exact p-value
• We still focus on the Sharp null: 𝐻/: 𝑌! 0 ≡ 𝑌! 1  for all 𝑖 = 1,⋯ ,𝑁

• Choice of test statistics:
Denote sample means for every strata / block

 

• Weighted combination of group mean differences across blocks

 

• Weights based on relative sample size 𝜆 𝑗 = ! "
!

sample difference is more accurate in larger strata
• “inverse-variance-weighting”: assume that per-strata potential outcomes sample variances 

𝑆#$(𝑗) ≡ 𝑆%$ 𝑗 ≡ 𝑆$ for all 𝑗, then under stratified randomization
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Fisher’s exact p-value
• We still focus on the Sharp null: 𝐻/: 𝑌! 0 ≡ 𝑌! 1  for all 𝑖 = 1,⋯ ,𝑁

• Choice of test statistics:
Denote sample means for every strata / block

 

• Weighted combination of group mean differences across blocks

 

• Weights based on relative sample size 𝜆 𝑗 = ! "
!

sample difference is more accurate in larger strata
• “inverse-variance-weighting”: weights
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Fisher’s exact p-value
• Can we simply use the two-sample mean difference statistic 𝑇 = L𝑌&345 − L𝑌6345 ?

• This is still one test statistic and we will still get valid Fisher’s exact p-value if we 
follow the stratified randomization procedure to generate the reference 
distribution

Simpson’s paradox:
• We may not always get small value of 𝑇 even wen the sharp null is true

• Example: 
𝑌! 0 ≡ 𝑌! 1 = 1 for strata 1 and 𝑌! 0 ≡ 𝑌! 1 = 2 for strata 2, 
𝑁6 1 = 𝑁& 1 = 5, 𝑁6 2 = 15 and 𝑁& 2 = 5
Then L𝑌&345 = 1.5 and L𝑌6345 = 1.75 

• Power of the Fisher’s test is affected



Fisher’s exact p-value and the project STAR
• Choice of test statistics:

• Rank-based statistics
• Get 𝑅!589:8 as the within-strata rank of each individual 𝑖 (definition page 196 of Imbens 

and Rubin’s book)
• Average difference of within-strata ranks between treatment and control

L𝑅&589:8 − L𝑅6589:8
• Calculate the null distribution of test statistics

• Randomly simulate treatment assignments following the same stratified randomization

• Project STAR results
• P-values for the first 3 are similar 

as most schools have 4 classes
• Large p-value for rank-based statistics 

as # classes too few in most schools

Test statistics P-value

Weights
	𝜆 𝑗 = " #

"
0.034

“inverse-
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0.023
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Neyman’s repeated sampling approach
• Target: PATE or SATE 𝜏 = ∑"

* "
*
𝜏(𝑗) where 𝜏(𝑗) is the PATE or SATE for strata 𝑗 

• Analysis procedure
1. Apply Neyman’s analysis to each strata / block

• Variance estimator is conservative within each strata as discussed before
2. Aggregate block-specific estimates and variances
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• Both treatment assignments and potential outcomes are independent across strata
3. Statistical inference

• Use normal approximation of the distribution of 𝜏̂589:8
• Normal approximation works as long as 𝑁 is large enough

• Either small strata size with many strata or large strata size with few strata



Power gain in Neyman’s approach after stratification
• Variance decomposition

• Assume that the treatment proportion * "
*

 is the same across all strata 
• Then 𝜏̂&'( = 𝜏̂)*+,*

• 𝕍()*+,-.- 𝜏̂/01 − 𝕍2.34.050-/ 𝜏̂2.34. ≥ 0
• Intuitively, we do not need to consider noise due to heterogeneity across blocks
• For a rigorous proof, see Peng’s book section 5.3.3

• Result in the project STAR
• 𝜏̂589:8 = 0.241, Y𝕍 𝜏̂589:8 = 0.092. 
• (In correct) if we analyze as if it is a completely randomized experiment

• 𝜏̂;<= = L𝑌&345 − L𝑌6345 = 0.224 can be a biased estimate for 𝜏
• :𝕍 𝜏̂&'( = 0.141. larger standard deviation



Linear regression
• Run separate linear regressions within each strata

• Does not work if each strata size is too small

• Denote 𝐵!(𝑗) as the indicator variable of whether sample 𝑖 belong to strata 𝑗 
• If there are no covariates, equivalently, we can write separate linear regression models into a 

joint regression model
𝑌-./) = 𝛼" + 𝜏(𝑗)𝑊- + 𝜀-

• The underlying model for the potential outcomes 
𝔼 𝑌! 𝑤 | 𝐵! 𝑗 , 𝑗 = 1,⋯ , 𝐽 = 𝛼6 + 𝜏(𝑗)𝑤

• Average causal effect for strata 𝑗 is 𝜏(𝑗)
• The strata indicators 𝐵!(𝑗)  are treated as pre-treatment covariates
• We need to adjust for the strata indicators as we only have conditional independence

𝒀 0 , 𝒀 1 ⊥ 𝑾	|	𝑩(𝑗)

• The homoscedastic error assumption for the joint model is assuming that 
𝕍 𝑌! 0 | 𝐵! 𝑗 , 𝑗 = 1,⋯ , 𝐽 = 𝕍 𝑌! 1 | 𝐵! 𝑗 , 𝑗 = 1,⋯ , 𝐽 = 𝜎.



Post-stratification
• In a completely randomized experiment, each assignment vector has the sample probability 

(𝑃 𝑾 = 𝒘 ) if ∑!#$* 𝑤! = 𝑁& 
• If we focus on a subgroup 𝑆, conditional on 𝑁&,C = ∑!∈C𝑊!, the assignment vector for the 

individuals in the subgroup also has the same probability (𝑃 𝑾C = 𝒘C ) if ∑!∈C𝑤! = 𝑁&,C
• So conditional on 𝑁&,C, we can treat the treatment assignment as from a completely 

randomized experiment also for the subgroup

• Post-stratification (Miratrix. et al. 1971. J. Royal Stat. Soc. B.) 
• Blocking after the experiment is conducted 
• Analyze the experiment as from a stratified randomized experiment by conditioning on 
𝑁&,C for each strata 𝑆

• By post-stratification, we can stratify individuals into relatively homogenous 
subpopulations

• Post-stratification is nearly as efficient as pre-randomization blocking



Meinert et. al. (1970)’s example
• A completely randomized experiment. 
• Treatment is tolbutamide (𝑍 = 1) and control is a placebo (𝑍 = 0)
• Causal effect: difference in the survival probability

• Subgroup and sample average estimates with post-stratification

Peng’s book Section 5.4.1


