Lecture 3
randomized experiments and
Fisher’s exact p-value



Outline

* Five examples of randomized experiment mechanisms

e Fisher’s exact p-value

* Fisher’s original experiment
* Hypothesis testing
e Construct confidence intervals

e Choice of the test statistics

* Suggested reading: Imbens and Rubin Chapter Chapter 4-5, Peng’s book
Chapter Chapter 3



Treatment assighment mechanism

e Assignment vector for binary treatment with N units: W = (W, -+, W) € {0,1}"

* Unconfoundedness property: P(W|X,Y(0),Y(1)) = P(W|X)
* Assignment mechanism does not depend unobserved U pretreatment confounders
* U includes potential outcomes (Yl-(O), Yl-(l))
* We can alternatively understand it as
w; 1 (¥:(0),%,(D) | X,
 Make the treatment and control groups “identica
P(Y;(0),v;(1)| X;,W; = 0) = P(Y;(0),Y;(D| X;,W; = 1)

III

* |dentify conditional population average treatment effect under unconfoundedness
t(x) = E(Y;(1) = Y;(0) | X;= x)
=EY;(D [ X;=x,W; =1) — E(Y;(0) | X;=x,W; = 0)
" | = EY;(W)| X;= x,W; = 1) — E(;(W)) | X;= x,W; = 0)
Conditional expectations =EY;| X;=x,W; =1) —E(Y; | X;= x, W, = 0)

that we can evaluate
based on observed data



Common designs of randomized experiments

* Five examples of randomized experiment mechanisms
* Bernoulli trial
 Completely randomized experiment
e Stratified randomized experiment
* Paired randomized experiment
 Rerandomization

* The purpose of restricting the assignment mechanism is to eliminate assignment vectors that
are less desirable for estimating causal effects
 Examples: all males get treatment; all females get control



Bernoulli trial

* Simplest Bernoulli experiment tosses a (fair) coin for each unit
* If the coin is heads, then unit receive treatment
 Otherwise, the unit receive control

e Foreachw € {0,1}", P(W = w|X) = P(W =w) = 0.5
e Wy, Wy ~ Bernoulli(0.5) and are independent

 More generally, we can toss a specialized coin for each unit depending on its covariates
 Define propensity score e(X;) = P(W; = 1| X;)
* Assignment property: P(W = w|X) = [[)L,[e(X)"i(1 — e(X;)) 1=W1]
« Wy, Wy arestill independent and each W; ~ Bernoulli(e(X;))
« Example: when trying to induce people with serious disease to enroll for the trial of a
promising drug, we give them a higher probability to receive the treatment

 What is the probability that all units receive the same treatment?
 Any problems? Solution?



Completely randomized experiment

A fixed number of subjects N; is assigned to receive the active treatment

Assignment probability

(-t .
if w; = N
P(W =w|X) = (Nt) 1 i=1 ‘
\ 0 otherwise

Completely randomized experiment guarantees that there are exactly N; individuals receiving the
treatment and N — N; individuals receiving the control
Wi, -+, Wy are slightly negatively associated

Assume that half individuals are female
 What is the probability that all females receive the control?
* [sthat problematic?
Do we achieve covariates balancing?
* Randomization guarantee covariates balancing on average
* For this single experiment, we can get a terrible estimate and wrong judgement
* Also reflected as large uncertainty in our estimates



Stratified randomized experiment

e Basic procedure:
1. Blocking (Stratification): create groups of similar units based on pre-treatment covariates,
let B; € {1,---,]} be the block indicator
2. Block (Stratified) randomization: completely randomize treatment assighment within each
group
 Blocking can improve the efficiency by minimizing the variance of the potential outcomes
within each strata
“Block what you can and randomize what you cannot”
Box, et al. (2005). Statistics for Experimenters. 2nd eds. Wiley

 Assignment probability
()

P(W = w|X) = H,-=1 (11\\/1((]1))) ! z:BF,-W" =M forj=1..]

X 0 otherwise

-1




Examples

 Randomized trial for the Moderna vaccine
[Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England journal of medicine, 2020.]

Participants were randomly assigned in a 1:1 ratio, through the use of a centralized interactive
response technology system, to receive vaccine or placebo.

Assignment was stratified into the following risk groups: persons 65 years of age or older, persons
younger than 65 years of age who were at heightened risk (at risk) for severe Covid-19, and persons
younger than 65 years of age without heightened risk (not at risk).

* Experiment of women policy makers in India
[Women as policy makers: Evidence from a randomized policy experiment in India. Econometrica,2004]

Each Gram Panchayat (GP) encompasses 10,000 people in several villages (between 5 and 15)
Starting 1993, in a third of the villages in each GP, only women could be candidates for the position
of councilor for the area.

Random selection: villages are ranked in consecutive order according to an administrative number,
every third village is reserved for a woman

How is the experiment stratified?



Paired randomized experiment

* Can we keep blocking until we cannot block any further?

* Procedure:
1. Create /] = N /2 pairs of similar units
2. Randomize treatment assignment within each pair

* Example: evaluation of health insurance policy

[Public policy for the poor? A randomised assessment of the Mexican universal health insurance

programme. The lancet, 2009.]

 Seguro Popular, a programme aimed to deliver health insurance, regular and preventive
medical care, medicines, and health facilities to 50 million uninsured Mexicans

* Units: health clusters = predefined health facility catchment areas

 Randomization within 74 matched pairs of “similar” health clusters

 Qutcome: proportion of households within each health cluster who experienced
catastrophic medical expenditure



Rerandomization
[Morgan and Rubin. 2012. Ann. Stat., Li et al. 2018. PNAS]

The more covariates, the more likely at least one covariate will be imbalanced across
treatment groups

Randomization only eliminate confounding factors and yield unbiased on average (over
repeated run of experiments)

For any particular experiment, covariate imbalance is possible

Procedure:
1. Specify the acceptable level of covariate balance
2. Randomize the treatment and check covariate balance
3. Repeat until the covariate balance criterion is met

~
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Rerandomization: an example

[Rerandomization to balance tiers of covariates. Journal of the American Statistical Association, 2015.]

* The study aim to examine whether observational studies can be analyzed to yield valid estimates of causal effects.

* Undergraduate psychology students at a particular college were randomized to be in one of two arms: a
randomized experiment (n, = 235) or an observational study (n, = 210).

* Inthe randomized experiment were randomized to take either a vocabulary or mathematics course

* Actual Randomization
* Pure Randomization
® Rerandomization F
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Standardized Difference in Covariate Means



Randomization Inference vs. Model-based Inference

Randomization as the “reason basis for inference” (Fisher)

Randomness comes from the physical act of randomization, which then can be used to make
statistical inference

Also called design-based inference

Advantage: design justifies analysis

model-based inference: assume a distribution for potential outcomes
(at least the i.i.d. assumptions)
Advantage of model-based inference: flexibility

Two types of classical randomization inference
* Fisher’s exact p-values
* Neyman’s repeated sampling approach



Fisher’s original experiment: Lady tasting tea
[Fisher, 1935]

The lady in question (Muriel Bristol) claimed to be able to tell whether the tea or the milk was
added first to a cup.
Fisher proposed to give her eight cups, four of each variety, in random order.

Null hypothesis: the lady cannot tell the difference
How to define the causal effect?
* whether the tea or the milk was added first has any effect
on the lady’s guess result
What is a unit?
What is the treatment assignment?
e W; =1ifteaisadded first
What is Y;(0) and Y;(1)?
 The lady’s potential guess results

Sharp null: H,:Y;(0) = Y;(1) foralli =1,---,8




Fisher’s original experiment: Lady tasting tea

[Fisher, 1935]

Sharp null: H,:Y;(0) = Y;(1) foralli =1,---,8
Test statistics: the number of correctly classified cups

The lady classified all 8 cups correctly! Did this happen by chance?

Goal: calculate the distribution of the test statistics under the null

Completely randomized experiment: (

8) = 70 possible scenarios with equal probability

Under the sharp null, the lady will always have the same guesses under all scenarios

cups guess actual | scenarios

©ONOGTAWN =
e e I e I

4444 <Z

=
T
T
T
M
M
M
M
4

correctly guessed

o4 444

probability

00 01 02 03 04 05

L

I

—

fa—

—

0

2 4 6 8

Number of correctly guessed cups

Null distribution of the test statistics

P-value:
1/70



Cough frequency example with 6 units

Table 5.3. Cough Frequency for the First Six Units from the Honey Study Imputation under the sharp null

Unit Potential Outcomes Cough Frequency (cfa)
Cough F £ Observed Variabl
ough Frequency (¢£2) ks Y(0) Y;(1) Yo% rank(YPbs)
Yi(0) Yi(1) W X; rees
(cfp) (cfa) 1 3) 3 3 4
1 ? 3 1 - 3 2 ©) 5 > 6
2 ? 5 1 6 5 3 0) 0 0 1.5
3 ? 0 1 4 0 4 4 @) 4 5
4 4 ? 0 4 4
< . : 0 | 0 5 0 0) 0 1.5
) | ) 0 5 . 6 1 (1) 1 3

« Sharpnull: H,:Y;(0) =Y;(1) foralli =1,---,6
absolutely no causal effect of the treatment
e Test statistics: |[V°PS — Y.2P5| or |rank, (Y;°"®) — rank,(Y;°"%)|



Cough frequency example with 6 units

6) = 20 assignments with equal probability

e |f following completely randomized experiment: (3

Table 5.5. Randomization Distribution for Two Statistics for the Honey Data

Jfrom Table 5.3
Statistic: Absolute Value of 16
Difference in Average « P-value based on test statistics | /2PS — ¥,2Ps 1> = 0.8
i W W5 W4 Ws We Levels(r)  Ranks(Rp) e P-value based on test statistics
0 0 0 1 1 1 —1.00 —0.67 _— E— 16
0 0 1 0 1 1 —3.67 —3.00 |rank(Yt°bS) — rank(YCObS)|:2—0 = (0.8
0 0 1 1 0 1 —1.00 —0.67
0 0 1 1 1 0 —1.67 —1.67
0 1 0 0 1 1 —0.33 0.00 * The most extreme p-value we can get: 2/20=0.1
0 1 0 1 0 1 2.33 2.33 . . . . . . e
0 : 0 : X 0 s 33 « N = 6istoo small to obtain statistically significant
0 1 1 0 0 1 —-0.33 0.00 rejections
0 1 1 0 1 0 —1.00 —1.00
0 1 1 1 0 0 1.67 1.33
1 0 0 0 1 1 —1.67 —1.33
1 0 0 1 0 1 1.00 1.00
1 0 0 1 1 0 0.33 0.00
1 0 1 0 0 1 —1.67 —1.33
1 0 1 0 1 0 —2.33 —2.33
1 0 1 1 0 0 0.33 0.00
1 1 0 0 0 1 1.67 1.67
1 1 0 0 1 0 1.00 0.67
1 1 0 1 0 0 3.67 3.00
1 1 1 0 0 0 1.00 0.67




Illustration of Fisher’s randomization test

(z',Y) = T(z",Y)

(z%,Y) = T(z°,Y)

(Z,Y) = T(Z,Y) 5 e =M ) I{T(z",Y) > T(Z,Y)}

m=1

(ZM,Y) = T(ZM,Y)

Figure 3.1 of Peng’s book



Fisher’s exact p-value

* Features

Justified by randomization alone: No assumptions about models or asymptotic normality
The sharp null may be of little interest

P-value is exact for small N

Same idea as a permutation test

 Computation of p-value
e Exact computation is difficult when N is large

 Monte Carlo approximation

1. Fillin missing potential outcomes under the sharp null

2. Sample W; according to complete randomization

3. Compute the test statistic to form a reference distribution
 Approximation can be arbitrarily accurate by increasing number of draws

 Fisher’s exact p-value can be calculated for any randomization mechanism
* Analytical approximations when N is large (omitted)



Cough frequency example with N = 72

P-value computation with Monte Carlo approximation

Number of Simulations P-Value (ETET)
100 0.010 (0.010)
1,000 0.044 (0.006)
10,000 0.044 (0.002)
100,000 0.042 (0.001)
1,000,000 0.043 (0.000)

Note: Statistic is absolute value of difference in average ranks of
treated and control cough frequencies. P-value is proportion of

draws at least as large as observed statistic.



Fisher’s exact p-value and Cl

* Choice of the null hypothesis

Sharp null of no treatment effect: H,: Y;(0) = Y;(1) foralli =1,:--,N

Fisher’s approach cannot accommodate a null hypothesis of zero average effect : we can
not impute the unmeasured potential outcomes

Allow more general null hypothesis H,: Y;(0) = Y;(1) + C; foralli = 1,---, N with pre-
defined (Cy, - Cy)

* Invert Fisher’s exact p-values for confidence intervals of 7,

Assume the constant additive effect model Y;(0) — Y;(1) = 1,

We can still impute the missing potential outcomes under the above null with a pre-
specified 7,

Collect all null values 7, that cannot be rejected by a-level Fisher’s exact test

ldea: if we cannot reject a null hypothesis with a particular effect size, then the confidence
interval should include it



Cough frequency example revisited

* We want to test for the generalized sharp null Hy : Y;(1) — Y;(0) = 0.5
* We need to impute the missing values differently under the new H,
* The test statistics is different
* Based on the mean difference |¥,°PS — ¥°P$ — 0.5]
* Based on the rank: we define the rank of each unit based on rank(Y;(0))[or

equivalently rank(Y;(1))], instead of rank(YiObS)

Unit Potential Outcomes Actual Observed
Y;(0) Y,(1) Treatment Outcome

1 (2.5) 3.0 1 3.0

2 4.5) 5.0 1 5.0

3 (—0.5) 0.0 1 0.0

4 4.0 (4.5) 0 4.0

5 0.0 (0.5) 0 0.0

6 1.0 (1.5) 0 1.0




Cough frequency example with N = 72

Hypothesized P-Value (level) P-Value (rank)
Treatment Effect
—3.00 0.000 0.000
—2.75 0.000 0.000
—2.50 0.000 0.000
—2.25 0.000 0.000
—2.00 0.001 0.000
~1.75 0.006 0.078 ] o loobs  Sobe
—150 0.037 0.078  95% Cl based on statistics |Yt — Y2 — 14]:
—1.44 0.050 0.078 * [—1.44,0.06]
—1.25 0.146 0.078
_(l)-gg 8-;‘33 8-222 e 95% Cl based on statistics
0,50 0.604 0.428 [rank,(¥;(0)) — rank(¥;(0))|
~0.25 0.237 0.429 * [-2,0]
0.00 0.067 0.043
0.06 0.050 0.043
0.25 0.014 0.001
0.50 0.003 0.000
0.75 0.000 0.001

1.00 0.000 0.000




Choice of test statistics

* Fisher’s exact p-values are valid for any test statistics
* Choice of test statistic determines “power” to detect a particular alternative hypotheses
* Choose a test statistics that is sensitive to expected departures from the null hypothesis
* One principle: test statistics is “centered at 0” under the null

« Examples for test statistics for the sharp null Hy: Y;(0) = Y;(1)
* Sample mean difference: |¥,°PS — 7.0Ps]
* Sample rank mean difference: |rankt(Yi°bS) — l‘ankc(YiObs)l

[check Imbens and Rubin book page 57 for a formal definition of a normalized rank with
ties]

e Quantile difference (more robust to outliers)
« Difference in medians: |[med,(¥;°>) — med (Y%

* Fisher’s exact test statistics for binary outcome: S =YX, W;Y;(1) = Y, WY,
e Covariate-adjusted statistics



Fisher’s exact test for binary outcome

Treated (W; = 1) Control (W; = 0) Total
Y, =1 n n m
| ). Wt Y (- wv()

l= 1=
Y, =0 n n N—m
! DU WA-v) Y A=W - KO)
1= 1=

Total N, N, N

* In the tea tasting example, the lady knows that there are 4 cups for each variety, so m is also fixed
* Test statistics: S = Y, W;Y;(1) = YL, WY,
* Then under complete randomization and the sharp null, S follows a hyper-geometric distribution

(9) (v, )
(v,

* Under the sharp null Hy: Y;(0) = Y;(1), m is always naturally fixed as Y; = Y;(0) = Y;(1)are always fixed

P(S=5s) =



Lady tasting tea revisited: R code

# Data setup: a 2x2 contingency table where rows represent guessed (milk first or tea first),
# and columns represent actual preparation (milk first or tea first).
data <- matrix(c(4, @, @, 4), nrow = 2,
dimnames = list(Guessed = c("Milk First", "Tea First"),
Actual = c("Milk First", "Tea First")))

Actual
Guessed Milk First Tea First
Milk First 4 ]
Tea First 0 4

# Perform Fisher's Exact Test
fisher_result <- fisher.test(data, alternative = "greater")

> print(fisher_result)
Fisher's Exact Test for Count Data

data: data
p-value = 0.01429

> 1/70
[1] 0.01428571



The project STAR example

(Mosteller. 1997. Bull. Am. Acad. Arts Sci.)

* The student-Teacher Achievement Ratio Project (1985-1989)
* More than 10,000 students involved with the cost of S12 million
» Effects of class size in early grade levels
* 3 arms: Small class, Regular-sized class, Regular class with aid

* Long-term impact of class size
Small class Regular-sized class

Graduate 754 892
Not graduate 148 189
Total 902 1081

* Check by yourself with R
e p-values: 0.28 (one-sided), 0.55 (two-sided)
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