Lecture 6
Regression for completely
randomized experiment



Outline

Using regression with no covariates

Using regression with covariates adjustments

Using regression with covariates adjustments and interactions

The LRC-CPPT cholesterol data example



Linear regression and causality

Assume we have data from a completely randomized experiment

We can run the following linear regression:
Yo ~a +yW; + BTX;

Or a simpler linear regression model: Y°°S ~ a + yW;
Or more complicated linear regression model with interactions:
VP ~a +yW; + BTX; + ¥ XW; + ¢
Or
YOS ~a +yW; + BTX; + ¥ (Xi—= X)W, + ¢

Which of these regression models provide an estimate of the average causal effect?

Which model is the best to use?



Why linear model?

* Benefits of using linear regression:

e Adjust for confounding variables
* Not need for completely randomized experiments as pre-treatment covariates are not

confounded
 More accurate estimator if covariates explain part of the noise in the outcome
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* Widely used in practice
« How can we do correct inference if we take into account the randomization procedure of treatment

assignments?



The LRC-CPPT cholesterol data

* An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
e N = 337 patients are completely randomized
* Pre-treatment covariates: two cholesterol measurements before and after a suggestion of

low-cholesterol diet, both measurements taken prior to the random assignment
 cholp=0.25chol1 + 0.75 chol2

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N; =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 4420
chol2 289.2 (24.1) 287.4 (21.4) 2240 435.0
cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0
chold -85 (10.8) —-334 (21.3) —113.3 295

comp 74.5 (21.0) 59.9 (24.4) 0 1010




The LRC-CPPT cholesterol data

* An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
e N = 337 patients are completely randomized
* Post-treatment outcomes:

» cholf: post-treatment average cholesterol level

« chold = cholf — cholp

* comp: compliance rate, the percentage of individuals follow the treatment assignment

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N; =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 4420
chol2 289.2 (24.1) 287.4 (21.4) 2240 435.0
cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0
chold -85 (10.8) —-334 (21.3) —113.3 295

comp 74.5 (21.0) 59.9 (24.4) 0 1010




The LRC-CPPT cholesterol data

* Can we evaluate the drug effect by simply look at whether chold is positive or negative?
* No! The before-after comparison is NOT necessarily causal
* Even for the control group, chold is significantly negative

* The patient’s post-treatment cholesterol should be highly correlated with his/her pre-

treatment cholesterol level

 How do we evaluate the causal effect after “adjusting for the pre-treatment cholestero
e Adjust for pre-treatment cholesterol by regression

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N; =172) Treatment (Ny =165)
Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 4420

chol?2 289.2 (24.1) 287.4 (21.4) 224.0 4350

cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0

chold —8.5 (10.8) —334 (21.3) —1133 295

comp 74.5 (21.0) 59.9 (24.4) 0 101.0

”?



Linear regression with no covariates

 Model:
YoPS = a + bW, + ¢;

* What is the solution?
(a,b) = arg mIHE(YiObS —a — bW,)?

(a,b)
— bW;)* = argggibr}[ziszo(Yi"bs — @)% + Ty =1 (°°° — a — b)?

e arg mlbr)lz L(YOPS — g

' ~dif b —ob
* Same as the estimator from Neyman’s approach rd‘t — 7? S Yg >



Causal interpretation of this linear model

* Assume that there is a super-population and the potential outcomes (Y;(0),Y;(1)) arei.i.d.
samples

Linear model on the potential outcomes
Y;(0) = a + £(0)
V(D) =Y +r,=a+7+0)+(r;—1) =a+1+ (1)
e 7 =E(1)), IE(el-(O)) =0

In general, we have the model
Yi(w) =a+tw+ g(w)
« a=E(Y;(0))and E(g;(w)) = 0

If the treatment is binary (w = 0,1), then the above model essentially has no assumption
on Y;(0) and Y;(1)

If the treatment is continuous, the model assumes a linear but heterogenous causal effect
on each individual



Causal interpretation of this linear model

* The observed outcomes Y; = W;Y;(1) + (1 — W;)Y;(0)
* Are observedY; i.i.d. samples under complete randomization?
* Conditionalon (W, ---,W,)), areY; i.i.d., are Y; independent across i?

We assume the following identification conditions

 Randomization of the treatment (unconfoundedness):
(Y(0),Y(1) LW
e Satisfied in completely randomized experiments

e ThenE(Y°*S|W; = w) = E(Y;(W)|W; =w) = E(Y,(W)) = a + 1w

* Alinear regression model on observed outcome:
YOoPS = o + W, + ¢
where g; = g;,(W;)

Randomization of
Linear model on the Treatment assignment)
potential outcomes




Linear regression with no covariates

* regression model
YoPS = a + TW; + ¢

where g; = &;(W;)

How to perform statistical inference?
* Follow the linear regression convention, we perform statistical inference conditional on

(WlJ T WN)
* we treat assignment vectors as fixed

 Random sampling of the units
e (£;(0),€;(1)) are independent across i
* This implies that &; in the linear regression model are independent as W; are treated as

fixed
e But they may not follow the same distribution



Homoscedastic error assumption

Homoscedastic error assumption: V(&;(0)) = V(g;(1)) = o*
« ThenV(Y?°PS|W;) = & = & (W) always has variance o2

 Under homoscedasticity, OLS estimates of the variance is

N N
A2 1 o] (Y;)bs _ i}?bs)z,

JY|W:N_2 i=1 i - N-2 i=1

where the estimated residual is &; = ¥°% — Y, and the predicted value Y is

pobs _ s if W; =0,
‘ a%ls 4 7o i W, = 1.

 Same as the standard linear regression approach
1 (Ne—1)s&+(Ng—1)sf
N N—-2

e variance estimator for T is



Heteroscedastic errors

* If we don’t want to assume V(¢;(0)) = V(¢g;(1)), then the homoscedastic error
assumption fails
* ¢&; has the same distribution for W; = 0, and the same distribution for W; = 1

 We should use same variance within the treated and control group

2 2

. . A S S
» That leads to the variance estimator of 7 as N—C + Ft
C t

 Same as Neyman’s approach

* This is also called the Sandwich estimator that is robust to the violation of the
homoscedastic noise assumption in linear regression
* InR, it corresponds to Sandwich estimator with HC2 adjustment



Linear regression wit no covariates

To summarize the logic

We build a (linear) model on the potential outcomes

This model implies a linear regression model on the observed outcome if
(Y(0),Y(1)) 1L W

The coefficient on W; in the linear regression model is the average causal effect
(PATE)

The linear regression model treat W as fixed so it works for any randomization
assignment mechanism that satisfy (Y(0),¥(1)) L W

Noise in the linear regression model are independent as long as potential outcomes
are independent across units

 The OLS estimator estimator is always unbiased
 We can apply standard linear regression inference results if we assume
W(Ei (0)) = W(El(l))

« 1f V(g;(0)) # V(g;(1)), we need to use the robust variance estimator



Linear regression with covariates adjustment

¢ YiObS :C{+TWi+ﬁTXi+€i
* Why may we prefer adjusting for X;?

Confidence Intervals of ATE

Scatter Plot of Treatment vs. Post-Test Scores Colored by Prior Achievement

90

no covariate : o
Achievement Level

(o1}
o

o 3 Basic

Advanced

Post-Test Score
S

@ e
o
®

(o]
o

linear adjustment | ®

a
o

Treatment (0 = Control, 1 = Treatment)

I

I

|

|

I

¢ ¥ “ Proficient |
‘ |
|

l

|

|

|

* What is the corresponding model on potential outcomes?
* Do they always increase efficiency?



Causal interpretation of this linear model

Assumption 1: E(Y;(0)| X;) = a + BT X;
Assumption 2: CATE 7(x) = E(t;| X;= x) = 7 = PATE constant across levels of X;
* We can allow for heterogeneous causal effect but need E(7; — 7| X;) =0
(individual causal effects are independent from the pre-treatment covariates)

Then E(Y;(w)| X;) = E(Y;(0) + 1;w| X;) = a + tw + BT X;

Under unconfoundedness property: (Y(0),Y(1)) L W | X
. [E(Yl-0b5|Wl- =w,X; =x) = EY;(W)|X; =x) = a+1w+ BTX;
* Statistical inference is conditional on both X; and W;

* Even if the causal model is incorrect (either the violation of E(Y;(0)| X;) = a +
BTX; ort = E(t;] X; = x) ), this regression still gives valid estimation of T under
complete randomization (see next page)



OLS with covariates adjustment

2
(Aols ~0ls ﬂols) — arg;ru% E (}’iﬂbs —a—1-W;— Xiﬂ)
T

i=1
 The estimator £°I5 is unbiased for the causal estimand 7

« Even if the model is incorrect, £°!S still converges to T under complete randomization
o Aols — Yobs YCObS _ BT(Xt _ Xc)

Efficiency gain from regression
* If the modelis correct, we have
BV X))} BV X)Y ol of
+ +
N; N, N N,
* If X; is predictive of the (potential) outcomes, we have a more accurate estimator

* |f the linear model is incorrect, the efficiency might be lost
(Freedman 2008, Adv. Appl. Math.)




Estimate of the variance of £°!S with covariates
adjustment

 Assume homoscedastic error assumption:
b
V(g (0) = V(g (1) = 0% = V(Y,°>%|W;, X;)
We can follow standard linear regression inference and estimate variance of £ols 55

2

N obs ~ ols ~ols nols

. ! Sy (e — o — 29 — X, k)
omo __

T TNW -1 -dimXp) W (1—W)

 The robust variance estimator (Sandwich estimator) without assuming
homoscedasticity

{@rhetcro _ 1
Sp T : .
NN — 1 — dim(X;))

_ n 2
Z?;l (Wi . W)2 . (Y;)bs . &ols . %ols _Xiﬂols)
(W- (1 —W))°




Linear regression with covariates adjustment
and interactions

s this assumption T = 7(x) = E(7;| X; = x) reasonable?
» Effect heterogeneity across gender, age, pre-existing conditions ...
* How do we allow such heterogeneity in linear regression?

* T isstill the population average treatment effect
* Why do we need centering?
« Ifweassume E(7;| X;= x) = 7+ y'x, then E(7;) = 7 + yTE(X))

* Stillassume E(Y;(0)| X;) = a + BT X;
* Then B
EY;(W)| X;) = EV;(0) + yw| X)) =a+w+ B'X; + Y (X;— Xw



Linear regression with covariates adjustment
and interactions

* When does the above model imply the same model on observed data?
e Under unconfoundedness: (Y(O), Y(l)) LW |X
E(YPPS|W, =w, X; =x) = EY;W)|X; =x) =a+w+BTX; + YT (X;— X)w
* Statistical inference is conditional on both X; and W;

YoPS = a + tW; + BTX; + YT (X;— X)W, + ¢

 What is the benefit of adding interactions
 More flexible model assumptions

* Further increase efficiency
* In completely randomized experiments, with the interaction terms, we can always

guarantee no efficiency loss even when the linear model is wrong (Peng’s book
section 6.2.2)



Results on the LRC-CPPT cholesterol data

* We estimate the PATE for both the post-treatment cholesterol level cholf and compliance

A considerable reduction of the variance of £°!S for cholf when we add the pre-treatment
cholesterol levels in the regression

Our goal is always estimating PATE even after “covariates adjustment”

In randomized experiments satisfying (Y (0),Y(1)) 1 W, adjusting for covariates or not,
our estimate of PATE is always valid, we only change the efficiency of our estimate

Covariates Effect of Assignment to Treatment on
Post-Cholesterol Level Compliance
7 (s.e.) 2 (s.e.)
No covariates —26.22 (3.93) —14.64 (3.51)
cholp —25.01 (2.60) —14.68 (3.51)
choll, chol2 —25.02 (2.59) —14.95 (3.50)

choll, chol2, interacted with W —25.04 (2.56) —14.94 (3.49)




The LRC-CPPT cholesterol data

A bit explanation about compliance

* |f we compare between control and treatment group, we are evaluating the causal effect of
“being assigned”, not the causal effect of actually taking the drug

 Compliance lower in the treatment group possibly due to the side effect of the drug

e Can we just throw away individuals who do not follow the treatment and estimate the causal
effect of taking the drug based on the rest individuals? No

* Will discuss more about compliance in later lectures

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

Variable Control (N =172) Treatment (Ny =165)

Average Sample (S.D.) Average Sample (S.D.) Min Max

Pre-treatment choll 297.1 (23.1) 297.0 (20.4) 247.0 4420
chol2 289.2 (24.1) 287.4 (21.4) 224.0 4350
cholp 291.2 (23.2) 289.9 (20.4) 233.0 436.8
Post-treatment cholf 282.7 (24.9) 256.5 (26.2) 167.0 427.0
chold —8.5 (10.8) -334 (21.3) —113.3 295

comp 74.5 (21.0) 599 (24.4) 0 101.0




Why do we use linear regression in randomized
experiments?

* Covariate adjustment can be used to improve efficiency in randomized
experiments
e Always add interaction terms (between each covariate and
treatment) to guarantee power improvement

* In completely randomized experiments
* No need to worry about model misspecification
* Treatment and covariates are independent
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