
Lecture 6 
Regression for completely 
randomized experiment



Outline

• Using regression with no covariates

• Using regression with covariates adjustments

• Using regression with covariates adjustments and interactions

• The LRC-CPPT cholesterol data example



Linear regression and causality
• Assume we have data from a completely randomized experiment

• We can run the following linear regression: 
𝑌𝑖

obs ~ 𝛼 + 𝛾𝑊𝑖 + 𝜷𝑇𝑿𝑖

• Or a simpler linear regression model: 𝑌𝑖
obs ~ 𝛼 + 𝛾𝑊𝑖

• Or more complicated linear regression model with interactions:
𝑌𝑖

obs ~ 𝛼 + 𝛾𝑊𝑖 + 𝜷𝑇𝑿𝑖 + 𝜸𝑇  𝑿𝑖𝑊𝑖 + 𝜀𝑖

Or
𝑌𝑖

obs ~ 𝛼 + 𝛾𝑊𝑖 + 𝜷𝑇𝑿𝑖 + 𝜸𝑇  𝑿𝑖− ഥ𝑿 𝑊𝑖 + 𝜀𝑖

• Which of these regression models provide an estimate of the average causal effect?

• Which model is the best to use?



Why linear model?
• Benefits of using linear regression: 

• Adjust for confounding variables
• Not need for completely randomized experiments as pre-treatment covariates are not 

confounded
• More accurate estimator if covariates explain part of the noise in the outcome

• Widely used in practice
• How can we do correct inference if we take into account the randomization procedure of treatment 

assignments?



The LRC-CPPT cholesterol data

• An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
• 𝑁 = 337 patients are completely randomized
• Pre-treatment covariates: two cholesterol measurements before and after a suggestion of 

low-cholesterol diet, both measurements taken prior to the random assignment
• cholp = 0.25 chol1 + 0.75 chol2



The LRC-CPPT cholesterol data

• An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
• 𝑁 = 337 patients are completely randomized
• Post-treatment outcomes:

• cholf: post-treatment average cholesterol level
• chold = cholf – cholp

• comp: compliance rate, the percentage of individuals follow the treatment assignment



The LRC-CPPT cholesterol data
• Can we evaluate the drug effect by simply look at whether chold is positive or negative?

• No! The before-after comparison is NOT necessarily causal
• Even for the control group, chold is significantly negative
  

• The patient’s post-treatment cholesterol should be highly correlated with his/her pre-
treatment cholesterol level

• How do we evaluate the causal effect after “adjusting for the pre-treatment cholesterol”?
• Adjust for pre-treatment cholesterol by regression



Linear regression with no covariates
• Model: 

𝑌𝑖
obs = 𝑎 + 𝑏𝑊𝑖 + 𝜀𝑖

• What is the solution?

ො𝑎, ෠𝑏 = arg min
(𝑎,𝑏)

෍

𝑖=1

𝑁

(𝑌𝑖
obs − 𝑎 − 𝑏𝑊𝑖)2

• arg min
(𝑎,𝑏)

σ𝑖=1
𝑛 (𝑌𝑖

obs − 𝑎 − 𝑏𝑊𝑖)2 = argmin
(𝑎,𝑏)

σ𝑖:𝑊𝑖=0(𝑌𝑖
obs − 𝑎)2 + σ𝑖:𝑊𝑖=1(𝑌𝑖

obs − 𝑎 − 𝑏)2

•  

• ො𝑎 = ത𝑌𝑐
obs, ො𝑎 + ෠𝑏 = ത𝑌𝑡

obs

• ෠𝑏 = ത𝑌𝑡
obs − ത𝑌𝑐

obs

• Same as the estimator from Neyman’s approach



Causal interpretation of this linear model
• Assume that there is a super-population and the potential outcomes (𝑌𝑖 0 , 𝑌𝑖 1 ) are i.i.d. 

samples

• Linear model on the potential outcomes
𝑌𝑖 0 = 𝛼 + 𝜀𝑖 0

𝑌𝑖 1 = 𝑌𝑖 0 + 𝜏𝑖 = 𝛼 + 𝜏 + 𝜀𝑖 0 + 𝜏𝑖 − 𝜏 = 𝛼 + 𝜏 + 𝜀𝑖 1

• 𝜏 = 𝔼 𝜏𝑖 , 𝔼 𝜀𝑖 0 = 0

• In general, we have the model
𝑌𝑖 𝑤 = 𝛼 + 𝜏𝑤 + 𝜀𝑖 𝑤

• 𝛼 = 𝔼 𝑌𝑖 0  and 𝔼 𝜀𝑖 𝑤 = 0

• If the treatment is binary (𝑤 = 0,1), then the above model essentially has no assumption 
on 𝑌𝑖 0  and 𝑌𝑖 1

• If the treatment is continuous, the model assumes a linear but heterogenous causal effect 
on each individual



Causal interpretation of this linear model

• The observed outcomes 𝑌𝑖 = 𝑊𝑖𝑌𝑖 1 + (1 − 𝑊𝑖)𝑌𝑖 0  
• Are observed 𝑌𝑖  i.i.d. samples under complete randomization?
• Conditional on (𝑊1  ⋯ , 𝑊𝑛), are 𝑌𝑖  i.i.d. , are 𝑌𝑖  independent across 𝑖?
  

We assume the following identification conditions
• Randomization of the treatment (unconfoundedness): 

(𝒀 0 , 𝒀 1 ) ⊥ 𝑾

• Satisfied in completely randomized experiments

• Then,𝔼 𝑌𝑖
obs|𝑊𝑖 = 𝑤 = 𝔼 𝑌𝑖 𝑤 |𝑊𝑖 = 𝑤 = 𝔼 𝑌𝑖 𝑤 = 𝛼 + 𝜏𝑤

• A linear regression model on observed outcome:

𝑌𝑖
obs = 𝛼 + 𝜏𝑊𝑖 + 𝜀𝑖

where 𝜀𝑖 = 𝜀𝑖 𝑊𝑖

Linear model on the 
potential outcomes

Linear model on the 
observed outcomes

Randomization of 
Treatment assignment



Linear regression with no covariates

• regression model 

𝑌𝑖
obs = 𝛼 + 𝜏𝑊𝑖 + 𝜀𝑖

where 𝜀𝑖 = 𝜀𝑖 𝑊𝑖

How to perform statistical inference?
• Follow the linear regression convention, we perform statistical inference conditional on 

(𝑊1, ⋯ , 𝑊𝑁)
• we treat assignment vectors as fixed

• Random sampling of the units 
• (𝜀𝑖 0 , 𝜀𝑖 1 ) are independent across 𝑖
• This implies that 𝜀𝑖  in the linear regression model are independent as 𝑊𝑖  are treated as 

fixed
• But they may not follow the same distribution



Homoscedastic error assumption
Homoscedastic error assumption: 𝕍 𝜀𝑖(0) = 𝕍 𝜀𝑖(1) = 𝜎2

• Then𝕍 𝑌𝑖
obs|𝑊𝑖 = 𝜀𝑖 = 𝜀𝑖 𝑊𝑖  always has variance 𝜎2

• Under homoscedasticity, OLS estimates of the variance is

• Same as the standard linear regression approach

• variance estimator for Ƹ𝜏 is 
1

𝑁

𝑁𝑐−1 𝑠𝑐
2+ 𝑁𝑡−1 𝑠𝑡

2

𝑁−2



Heteroscedastic errors

• If we don’t want to assume 𝕍 𝜀𝑖(0) = 𝕍 𝜀𝑖(1) , then the homoscedastic error 
assumption fails
• 𝜀𝑖  has the same distribution for 𝑊𝑖 = 0, and the same distribution for 𝑊𝑖 = 1

• We should use same variance within the treated and control group

• That leads to the variance estimator of Ƹ𝜏 as  
𝑠𝑐

2

𝑁𝑐
+

𝑠𝑡
2

𝑁𝑡
 

• Same as Neyman’s approach

• This is also called the Sandwich estimator that is robust to the violation of the 
homoscedastic noise assumption in linear regression
• In R, it corresponds to Sandwich estimator with HC2 adjustment



Linear regression wit no covariates
To summarize the logic

• We build a (linear) model on the potential outcomes
• This model implies a linear regression model on the observed outcome if 

(𝒀 0 , 𝒀 1 ) ⊥ 𝑾
• The coefficient on 𝑊𝑖  in the linear regression model is the average causal effect 

(PATE)
•  The linear regression model treat 𝑾 as fixed so it works for any randomization 

assignment mechanism that satisfy (𝒀 0 , 𝒀 1 ) ⊥ 𝑾
• Noise in the linear regression model are independent as long as potential outcomes 

are independent across units

• For statistical inference
• The OLS estimator estimator is always unbiased
• We can apply standard linear regression inference results if we assume 

𝕍 𝜀𝑖(0) = 𝕍 𝜀𝑖(1)
• If 𝕍 𝜀𝑖(0) ≠ 𝕍 𝜀𝑖(1) , we need to use the robust variance estimator 



Linear regression with covariates adjustment

• 𝑌𝑖
obs = 𝛼 + 𝜏𝑊𝑖 + 𝜷𝑇𝑿𝑖 + 𝜀𝑖

• Why may we prefer adjusting for 𝑿𝑖?

• What is the corresponding model on potential outcomes?
• Do they always increase efficiency?



Causal interpretation of this linear model

• Assumption 1: 𝔼 𝑌𝑖 0 | 𝑿𝑖 = 𝛼 + 𝜷𝑇𝑿𝑖

• Assumption 2: CATE  𝜏 𝒙 = 𝔼 𝜏𝑖  𝑿𝑖= 𝒙 ≡ 𝜏 = PATE constant across levels of 𝑿𝑖

• We can allow for heterogeneous causal effect but need 𝔼 𝜏𝑖 − 𝜏 | 𝑿𝑖 = 0 
(individual causal effects are independent from the pre-treatment covariates)

• Then 𝔼 𝑌𝑖 𝑤 | 𝑿𝑖 = 𝔼 𝑌𝑖 0 + 𝜏𝑖𝑤| 𝑿𝑖 = 𝛼 + 𝜏𝑤 + 𝜷𝑇𝑿𝑖

• Under unconfoundedness property: 𝒀 0 , 𝒀 1 ⊥ 𝑾 | 𝑿

• 𝔼 𝑌𝑖
obs|𝑊𝑖 = 𝑤, 𝑿𝑖 = 𝒙 = 𝔼 𝑌𝑖 𝑤 |𝑿𝑖 = 𝒙 = 𝛼 + 𝜏𝑤 + 𝜷𝑇𝑿𝑖

• Statistical inference is conditional on both 𝑿𝑖  and 𝑊𝑖

• Even if the causal model is incorrect (either the violation of 𝔼 𝑌𝑖 0 | 𝑿𝑖 = 𝛼 +
𝜷𝑇𝑿𝑖  or 𝜏 ≡ 𝔼(𝜏𝑖|  𝑿𝑖 = 𝒙) ), this regression still gives valid estimation of 𝜏 under 
complete randomization (see next page)



OLS with covariates adjustment

• The estimator Ƹ𝜏ols is unbiased for the causal estimand  𝜏

• Even if the model is incorrect, Ƹ𝜏ols still converges to 𝜏 under complete randomization

• Ƹ𝜏ols = ത𝑌𝑡
obs − ത𝑌𝑐

obs − ෡𝜷𝑇(ഥ𝑿𝑡 − ഥ𝑿𝑐)

Efficiency gain from regression
• If the model is correct, we have 

𝕍 Ƹ𝜏ols ≈
𝔼 𝕍 𝑌𝑖 1  𝑿𝑖

𝑁𝑡
+

𝔼 𝕍 𝑌𝑖 0  𝑿𝑖

𝑁𝑐
≤

𝜎𝑐
2

𝑁𝑐

+
𝜎𝑡

2

𝑁𝑡

• If 𝑿𝑖  is predictive of the (potential) outcomes, we have a more accurate estimator
• If the linear model is incorrect, the efficiency might be lost

(Freedman 2008, Adv. Appl. Math.)



Estimate of the variance of Ƹ𝜏ols with covariates 
adjustment
• Assume homoscedastic error assumption: 

𝕍 𝜀𝑖(0) = 𝕍 𝜀𝑖(1) = 𝜎2 = 𝕍 𝑌𝑖
obs|𝑊𝑖 , 𝑿𝑖

     We can follow standard linear regression inference and estimate variance of Ƹ𝜏ols as

• The robust variance estimator (Sandwich estimator) without assuming 
homoscedasticity



Linear regression with covariates adjustment 
and interactions

Is this assumption 𝜏 ≡ 𝜏 𝒙 = 𝔼(𝜏𝑖|  𝑿𝑖 = 𝒙) reasonable?
• Effect heterogeneity across gender, age, pre-existing conditions …
• How do we allow such heterogeneity in linear regression?

• Assume CATE  𝜏 𝒙 = 𝔼 𝜏𝑖  𝑿𝑖= 𝒙 = 𝜏 + 𝜸𝑇(𝒙 −  ഥ𝑿)
• 𝜏 is still the population average treatment effect
• Why do we need centering?

• If we assume 𝔼 𝜏𝑖  𝑿𝑖= 𝒙 = 𝜏 + 𝜸𝑇𝒙, then 𝔼 𝜏𝑖 = 𝜏 + 𝜸𝑇𝔼 𝑿𝑖

• Still assume 𝔼 𝑌𝑖 0 | 𝑿𝑖 = 𝛼 + 𝜷𝑇𝑿𝑖

• Then 
𝔼 𝑌𝑖 𝑤 | 𝑿𝑖 = 𝔼 𝑌𝑖 0 + 𝜏𝑖𝑤| 𝑿𝑖 = 𝛼 + 𝜏𝑤 + 𝜷𝑇𝑿𝑖 + 𝜸𝑇  𝑿𝑖− ഥ𝑿 𝑤



Linear regression with covariates adjustment 
and interactions

• When does the above model imply the same model on observed data?
• Under unconfoundedness: 𝒀 0 , 𝒀 1 ⊥ 𝑾 | 𝑿

𝔼 𝑌𝑖
obs|𝑊𝑖 = 𝑤, 𝑿𝑖 = 𝒙 = 𝔼 𝑌𝑖 𝑤 |𝑿𝑖 = 𝒙 = 𝛼 + 𝜏𝑤 + 𝜷𝑇𝑿𝑖 + 𝜸𝑇  𝑿𝑖− ഥ𝑿 𝑤

• Statistical inference is conditional on both 𝑿𝑖  and 𝑊𝑖

• What is the benefit of adding interactions
• More flexible model assumptions
• Further increase efficiency
• In completely randomized experiments, with the interaction terms, we can always 

guarantee no efficiency loss even when the linear model is wrong (Peng’s book 
section 6.2.2)

𝑌𝑖
obs = 𝛼 + 𝜏𝑊𝑖 + 𝜷𝑇𝑿𝑖 + 𝜸𝑇  𝑿𝑖− ഥ𝑿 𝑊𝑖 + 𝜀𝑖



Results on the LRC-CPPT cholesterol data
• We estimate the PATE for both the post-treatment cholesterol level cholf and compliance

• A considerable reduction of the variance of Ƹ𝜏ols for cholf when we add the pre-treatment 
cholesterol levels in the regression

• Our goal is always estimating PATE even after “covariates adjustment”
• In randomized experiments satisfying (𝒀 0 , 𝒀 1 ) ⊥ 𝑾, adjusting for covariates or not, 

our estimate of PATE is always valid, we only change the efficiency of our estimate



The LRC-CPPT cholesterol data
A bit explanation about compliance
• If we compare between control and treatment group, we are evaluating the causal effect of 

“being assigned”, not the causal effect of actually taking the drug
• Compliance lower in the treatment group possibly due to the side effect of the drug
• Can we just throw away individuals who do not follow the treatment and estimate the causal 

effect of taking the drug based on the rest individuals? No
• Will discuss more about compliance in later lectures



Why do we use linear regression in randomized 
experiments?

• Covariate adjustment can be used to improve efficiency in randomized 
experiments
• Always add interaction terms (between each covariate and 

treatment) to guarantee power improvement 

• In completely randomized experiments
• No need to worry about model misspecification
• Treatment and covariates are independent


	Slide 1: Lecture 6  Regression for completely randomized experiment
	Slide 2: Outline
	Slide 3: Linear regression and causality
	Slide 4: Why linear model?
	Slide 5: The LRC-CPPT cholesterol data
	Slide 6: The LRC-CPPT cholesterol data
	Slide 7: The LRC-CPPT cholesterol data
	Slide 8: Linear regression with no covariates
	Slide 9: Causal interpretation of this linear model
	Slide 10: Causal interpretation of this linear model
	Slide 11: Linear regression with no covariates
	Slide 12: Homoscedastic error assumption
	Slide 13: Heteroscedastic errors
	Slide 14: Linear regression wit no covariates
	Slide 15: Linear regression with covariates adjustment
	Slide 16: Causal interpretation of this linear model
	Slide 17: OLS with covariates adjustment
	Slide 18: Estimate of the variance of tau hat to the ols with covariates adjustment
	Slide 19: Linear regression with covariates adjustment and interactions
	Slide 20: Linear regression with covariates adjustment and interactions
	Slide 21: Results on the LRC-CPPT cholesterol data
	Slide 22: The LRC-CPPT cholesterol data
	Slide 23: Why do we use linear regression in randomized experiments?

