Lecture 6 Regression for completely randomized experiment

Outline

- Using regression with no covariates
- Using regression with covariates adjustments
- Using regression with covariates adjustments and interactions
- The LRC-CPPT cholesterol data example

Linear regression and causality

- Assume we have data from a completely randomized experiment
- We can run the following linear regression:

$$Y_i^{\text{obs}} \sim \alpha + \gamma W_i + \boldsymbol{\beta}^T \boldsymbol{X}_i$$

- Or a simpler linear regression model: $Y_i^{\text{obs}} \sim \alpha + \gamma W_i$
- Or more complicated linear regression model with interactions:

$$Y_i^{\text{obs}} \sim \alpha + \gamma W_i + \boldsymbol{\beta}^T \boldsymbol{X}_i + \boldsymbol{\gamma}^T \boldsymbol{X}_i W_i + \varepsilon_i$$

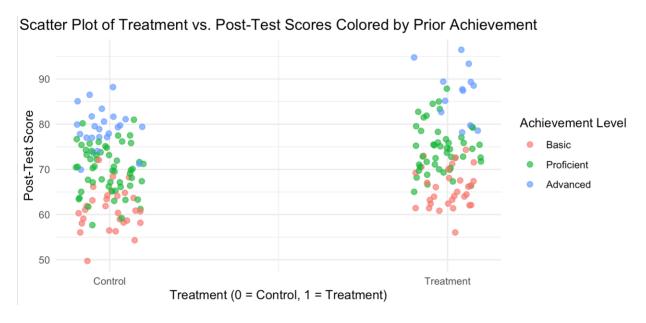
$$Y_i^{\text{obs}} \sim \alpha + \gamma W_i + \boldsymbol{\beta}^T \boldsymbol{X}_i + \boldsymbol{\gamma}^T (\boldsymbol{X}_i - \overline{\boldsymbol{X}}) W_i + \varepsilon_i$$

- Which of these regression models provide an estimate of the average causal effect?
- Which model is the best to use?

Or

Why linear model?

- Benefits of using linear regression:
 - Adjust for confounding variables
 - Not need for completely randomized experiments as pre-treatment covariates are not confounded
 - More accurate estimator if covariates explain part of the noise in the outcome



- Widely used in practice
- How can we do correct inference if we take into account the randomization procedure of treatment assignments?

- An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
- N = 337 patients are completely randomized
- **Pre-treatment covariates:** two cholesterol measurements before and after a suggestion of low-cholesterol diet, both measurements taken prior to the random assignment
 - cholp = 0.25 chol1 + 0.75 chol2

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

	Variable	Control ($N_c = 172$)		Treatment ($N_t = 165$)			
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	cho12	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

- An experiment to evaluate the effect of the drug cholestyramine on reducing cholesterol levels
- N = 337 patients are completely randomized
- Post-treatment outcomes:
 - cholf: post-treatment average cholesterol level
 - chold = cholf cholp
 - comp: compliance rate, the percentage of individuals follow the treatment assignment

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

	Variable	Control ($N_c = 172$)		Treatment ($N_t = 165$)			
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	chol2	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

- Can we evaluate the drug effect by simply look at whether chold is positive or negative?
 - No! The before-after comparison is NOT necessarily causal
 - Even for the control group, chold is significantly negative
- The patient's post-treatment cholesterol should be highly correlated with his/her pretreatment cholesterol level
- How do we evaluate the causal effect after "adjusting for the pre-treatment cholesterol"?
 - Adjust for pre-treatment cholesterol by regression

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

	Variable	Control ($N_c = 172$)		Treatment ($N_t = 165$)			
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	cho12	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

Linear regression with no covariates

Model:

$$Y_i^{\text{obs}} = a + bW_i + \varepsilon_i$$

What is the solution?

$$(\hat{a}, \hat{b}) = \arg\min_{(a,b)} \sum_{i=1}^{N} (Y_i^{\text{obs}} - a - bW_i)^2$$

- $\arg\min_{(a,b)} \sum_{i=1}^{n} (Y_i^{\text{obs}} a bW_i)^2 = \arg\min_{(a,b)} \left[\sum_{i:W_i=0} (Y_i^{\text{obs}} a)^2 + \sum_{i:W_i=1} (Y_i^{\text{obs}} a b)^2 \right]$
- $\overline{Y}_{c}^{obs} = \frac{1}{N_{c}} \sum_{i:W_{i}=0} Y_{i}^{obs}$ and $\overline{Y}_{t}^{obs} = \frac{1}{N_{t}} \sum_{i:W_{i}=1} Y_{i}^{obs}$
- $\hat{a} = \bar{Y}_c^{\text{obs}}$, $\hat{a} + \hat{b} = \bar{Y}_t^{\text{obs}}$
- $\hat{b} = \bar{Y}_t^{\text{obs}} \bar{Y}_c^{\text{obs}}$
- Same as the estimator from Neyman's approach

$$\hat{\tau}^{\text{dif}} = \overline{Y}_{t}^{\text{obs}} - \overline{Y}_{c}^{\text{obs}}$$

Causal interpretation of this linear model

- Assume that there is a super-population and the potential outcomes $(Y_i(0), Y_i(1))$ are i.i.d. samples
- Linear model on the potential outcomes

$$Y_i(0) = \alpha + \varepsilon_i(0)$$

$$Y_i(1) = Y_i(0) + \tau_i = \alpha + \tau + \varepsilon_i(0) + (\tau_i - \tau) = \alpha + \tau + \varepsilon_i(1)$$
• $\tau = \mathbb{E}(\tau_i), \mathbb{E}(\varepsilon_i(0)) = 0$

In general, we have the model

$$Y_i(w) = \alpha + \tau w + \varepsilon_i(w)$$

- $\alpha = \mathbb{E}(Y_i(0))$ and $\mathbb{E}(\varepsilon_i(w)) = 0$
- If the treatment is binary (w=0,1), then the above model essentially has no assumption on $Y_i(0)$ and $Y_i(1)$
- If the treatment is continuous, the model assumes a linear but heterogenous causal effect on each individual

Causal interpretation of this linear model

- The observed outcomes $Y_i = W_i Y_i(1) + (1 W_i) Y_i(0)$
 - Are observed Y_i i.i.d. samples under complete randomization?
 - Conditional on $(W_1 \cdots, W_n)$, are Y_i i.i.d., are Y_i independent across i?

We assume the following identification conditions

Randomization of the treatment (unconfoundedness):

$$(Y(0), Y(1)) \perp W$$

- Satisfied in completely randomized experiments
- Then, $\mathbb{E}(Y_i^{\text{obs}}|W_i=w)=\mathbb{E}(Y_i(w)|W_i=w)=\mathbb{E}(Y_i(w))=\alpha+\tau w$
- A linear regression model on observed outcome:

$$Y_i^{\mathrm{obs}} = \alpha + \tau W_i + \varepsilon_i$$
 where $\varepsilon_i = \varepsilon_i(W_i)$

Linear model on the potential outcomes

Randomization of Treatment assignment

Linear model on the observed outcomes

Linear regression with no covariates

regression model

$$Y_i^{\mathrm{obs}} = \alpha + \tau W_i + \varepsilon_i$$
 where $\varepsilon_i = \varepsilon_i(W_i)$

How to perform statistical inference?

- Follow the linear regression convention, we perform statistical inference conditional on (W_1, \cdots, W_N)
 - we treat assignment vectors as fixed
- Random sampling of the units
 - $(\varepsilon_i(0), \varepsilon_i(1))$ are independent across i
 - This implies that ε_i in the linear regression model are independent as W_i are treated as fixed
 - But they may not follow the same distribution

Homoscedastic error assumption

Homoscedastic error assumption: $\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1)) = \sigma^2$

- Then $\mathbb{V}\big(Y_i^{\text{obs}}|W_i\big) = \varepsilon_i = \varepsilon_i(W_i)$ always has variance σ^2
- Under homoscedasticity, OLS estimates of the variance is

$$\hat{\sigma}_{Y|W}^2 = \frac{1}{N-2} \sum_{i=1}^{N} \hat{\varepsilon}_i^2 = \frac{1}{N-2} \sum_{i=1}^{N} \left(Y_i^{\text{obs}} - \hat{Y}_i^{\text{obs}} \right)^2,$$

where the estimated residual is $\hat{\varepsilon}_i = Y_i^{\text{obs}} - \hat{Y}_i^{\text{obs}}$, and the predicted value \hat{Y}_i^{obs} is

$$\hat{Y}_i^{\text{obs}} = \begin{cases} \hat{\alpha}^{\text{ols}} & \text{if } W_i = 0, \\ \hat{\alpha}^{\text{ols}} + \hat{\tau}^{\text{ols}} & \text{if } W_i = 1. \end{cases}$$

- Same as the standard linear regression approach
 - variance estimator for $\hat{\tau}$ is $\frac{1}{N} \frac{(N_c-1)s_c^2 + (N_t-1)s_t^2}{N-2}$

Heteroscedastic errors

- If we don't want to assume $\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1))$, then the homoscedastic error assumption fails
 - ε_i has the same distribution for $W_i=0$, and the same distribution for $W_i=1$
 - We should use same variance within the treated and control group
 - That leads to the variance estimator of $\hat{\tau}$ as $\frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}$
 - Same as Neyman's approach
- This is also called the Sandwich estimator that is robust to the violation of the homoscedastic noise assumption in linear regression
 - In R, it corresponds to Sandwich estimator with HC2 adjustment

Linear regression wit no covariates

To summarize the logic

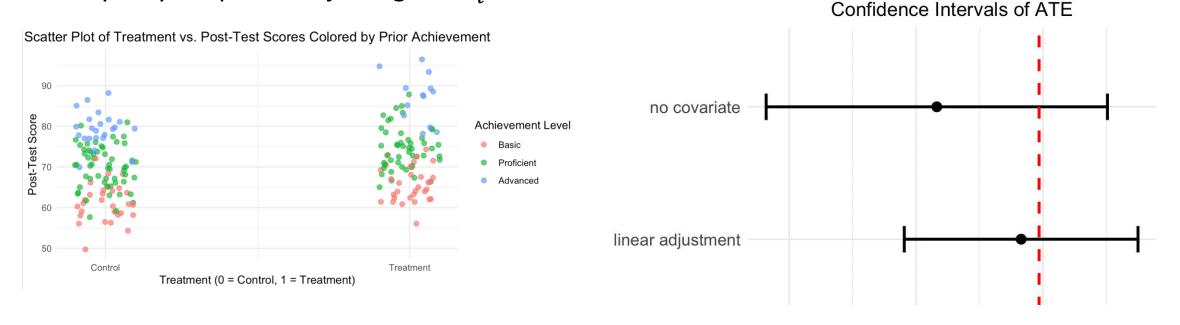
- We build a (linear) model on the potential outcomes
- This model implies a linear regression model on the observed outcome if $(Y(0), Y(1)) \perp W$
- The coefficient on W_i in the linear regression model is the average causal effect (PATE)
- The linear regression model treat W as fixed so it works for any randomization assignment mechanism that satisfy $(Y(0), Y(1)) \perp W$
- Noise in the linear regression model are independent as long as potential outcomes are independent across units

For statistical inference

- The OLS estimator estimator is always unbiased
- We can apply standard linear regression inference results if we assume $\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1))$
- If $\mathbb{V}(\varepsilon_i(0)) \neq \mathbb{V}(\varepsilon_i(1))$, we need to use the robust variance estimator

Linear regression with covariates adjustment

- $Y_i^{\text{obs}} = \alpha + \tau W_i + \boldsymbol{\beta}^T \boldsymbol{X}_i + \varepsilon_i$
 - Why may we prefer adjusting for X_i ?



- What is the corresponding model on potential outcomes?
- Do they always increase efficiency?

Causal interpretation of this linear model

- Assumption 1: $\mathbb{E}(Y_i(0)|X_i) = \alpha + \beta^T X_i$
- Assumption 2: CATE $\tau(x) = \mathbb{E}(\tau_i | X_i = x) \equiv \tau = \text{PATE constant across levels of } X_i$
 - We can allow for heterogeneous causal effect but need $\mathbb{E}(\tau_i \tau \mid X_i) = 0$ (individual causal effects are independent from the pre-treatment covariates)
- Then $\mathbb{E}(Y_i(w)|X_i) = \mathbb{E}(Y_i(0) + \tau_i w|X_i) = \alpha + \tau w + \boldsymbol{\beta}^T X_i$
- Under unconfoundedness property: $(Y(0), Y(1)) \perp W \mid X$
 - $\mathbb{E}(Y_i^{\text{obs}}|W_i=w, X_i=x) = \mathbb{E}(Y_i(w)|X_i=x) = \alpha + \tau w + \beta^T X_i$
 - Statistical inference is conditional on both X_i and W_i
 - Even if the causal model is incorrect (either the violation of $\mathbb{E}(Y_i(0)|X_i)=\alpha+$ $\boldsymbol{\beta}^TX_i$ or $\tau\equiv\mathbb{E}(\tau_i|X_i=x)$), this regression still gives valid estimation of τ under complete randomization (see next page)

OLS with covariates adjustment

$$(\hat{\alpha}^{\text{ols}}, \hat{\tau}^{\text{ols}}, \hat{\beta}^{\text{ols}}) = \arg\min_{\alpha, \tau, \beta} \sum_{i=1}^{N} \left(Y_i^{\text{obs}} - \alpha - \tau \cdot W_i - X_i \beta \right)^2$$

- The estimator $\hat{ au}^{
 m ols}$ is unbiased for the causal estimand au
- Even if the model is incorrect, $\hat{\tau}^{\mathrm{ols}}$ still converges to τ under complete randomization

•
$$\hat{\tau}^{\text{ols}} = \overline{Y}_t^{\text{obs}} - \overline{Y}_c^{\text{obs}} - \widehat{\boldsymbol{\beta}}^T (\overline{\boldsymbol{X}}_t - \overline{\boldsymbol{X}}_c)$$

Efficiency gain from regression

If the model is correct, we have

$$\mathbb{V}(\hat{\tau}^{\text{ols}}) \approx \frac{\mathbb{E}\{\mathbb{V}(Y_i(1)|X_i)\}}{N_t} + \frac{\mathbb{E}\{\mathbb{V}(Y_i(0)|X_i)\}}{N_c} \leq \frac{\sigma_c^2}{N_c} + \frac{\sigma_t^2}{N_t}$$

- If X_i is predictive of the (potential) outcomes, we have a more accurate estimator
- If the linear model is incorrect, the efficiency might be lost (Freedman 2008, Adv. Appl. Math.)

Estimate of the variance of $\hat{\tau}^{ols}$ with covariates adjustment

Assume homoscedastic error assumption:

$$\mathbb{V}(\varepsilon_i(0)) = \mathbb{V}(\varepsilon_i(1)) = \sigma^2 = \mathbb{V}(Y_i^{\text{obs}}|W_i, X_i)$$

We can follow standard linear regression inference and estimate variance of $\hat{ au}^{
m ols}$ as

$$\hat{\mathbb{V}}_{\text{sp}}^{\text{homo}} = \frac{1}{N(N-1-\dim(X_i))} \cdot \frac{\sum_{i=1}^{N} \left(Y_i^{\text{obs}} - \hat{\alpha}^{\text{ols}} - \hat{\tau}^{\text{ols}} - X_i \hat{\beta}^{\text{ols}}\right)^2}{\overline{W} \cdot (1-\overline{W})}$$

The robust variance estimator (Sandwich estimator) without assuming homoscedasticity

$$\hat{\mathbb{V}}_{\text{sp}}^{\text{hetero}} = \frac{1}{N \left(N - 1 - \dim(X_i)\right)}$$

$$\cdot \frac{\sum_{i=1}^{N} \left(W_i - \overline{W}\right)^2 \cdot \left(Y_i^{\text{obs}} - \hat{\alpha}^{\text{ols}} - \hat{\tau}^{\text{ols}} - X_i \hat{\beta}^{\text{ols}}\right)^2}{\left(\overline{W} \cdot (1 - \overline{W})\right)^2}$$

Linear regression with covariates adjustment and interactions

Is this assumption $\tau \equiv \tau(x) = \mathbb{E}(\tau_i | X_i = x)$ reasonable?

- Effect heterogeneity across gender, age, pre-existing conditions ...
- How do we allow such heterogeneity in linear regression?
- Assume CATE $\tau(x) = \mathbb{E}(\tau_i | X_i = x) = \tau + \gamma^T (x \overline{X})$
 - τ is still the population average treatment effect
 - Why do we need centering?
 - If we assume $\mathbb{E}(\tau_i | X_i = x) = \tau + \gamma^T x$, then $\mathbb{E}(\tau_i) = \tau + \gamma^T \mathbb{E}(X_i)$
- Still assume $\mathbb{E}(Y_i(0)|X_i) = \alpha + \boldsymbol{\beta}^T X_i$
- Then

$$\mathbb{E}(Y_i(w)|\mathbf{X}_i) = \mathbb{E}(Y_i(0) + \tau_i w|\mathbf{X}_i) = \alpha + \tau w + \boldsymbol{\beta}^T \mathbf{X}_i + \boldsymbol{\gamma}^T (\mathbf{X}_i - \overline{\mathbf{X}})w$$

Linear regression with covariates adjustment and interactions

- When does the above model imply the same model on observed data?
 - Under unconfoundedness: $(Y(0), Y(1)) \perp W \mid X$ $\mathbb{E}(Y_i^{\text{obs}} | W_i = w, X_i = x) = \mathbb{E}(Y_i(w) | X_i = x) = \alpha + \tau w + \beta^T X_i + \gamma^T (X_i \overline{X}) w$
 - Statistical inference is conditional on both X_i and W_i

$$Y_i^{\text{obs}} = \alpha + \tau W_i + \boldsymbol{\beta}^T \boldsymbol{X}_i + \boldsymbol{\gamma}^T (\boldsymbol{X}_i - \overline{\boldsymbol{X}}) W_i + \varepsilon_i$$

- What is the benefit of adding interactions
 - More flexible model assumptions
 - Further increase efficiency
 - In completely randomized experiments, with the interaction terms, we can always guarantee no efficiency loss even when the linear model is wrong (Peng's book section 6.2.2)

Results on the LRC-CPPT cholesterol data

- We estimate the PATE for both the post-treatment cholesterol level cholf and compliance
 - A considerable reduction of the variance of $\hat{\tau}^{ols}$ for cholf when we add the pre-treatment cholesterol levels in the regression
 - Our goal is always estimating PATE even after "covariates adjustment"
 - In randomized experiments satisfying $(Y(0), Y(1)) \perp W$, adjusting for covariates or not, our estimate of PATE is always valid, we only change the efficiency of our estimate

Covariates	Effect of Assignment to Treatment on						
	Post-Chole	Compliance					
	$\hat{ au}$	(s. e.)	τ̂	$\widehat{(s.e.)}$			
No covariates	-26.22	(3.93)	-14.64	(3.51)			
cholp	-25.01	(2.60)	-14.68	(3.51)			
chol1, chol2	-25.02	(2.59)	-14.95	(3.50)			
chol1, chol2, interacted with W	-25.04	(2.56)	-14.94	(3.49)			

A bit explanation about compliance

- If we compare between control and treatment group, we are evaluating the causal effect of "being assigned", not the causal effect of actually taking the drug
- Compliance lower in the treatment group possibly due to the side effect of the drug
- Can we just throw away individuals who do not follow the treatment and estimate the causal effect of taking the drug based on the rest individuals? No
- Will discuss more about compliance in later lectures

Table 7.1. Summary Statistics for PRC-CPPT Cholesterol Data

	Variable Contro		ol $(N_c = 172)$	Treatme	Treatment ($N_t = 165$)		
		Average	Sample (S.D.)	Average	Sample (S.D.)	Min	Max
Pre-treatment	chol1	297.1	(23.1)	297.0	(20.4)	247.0	442.0
	cho12	289.2	(24.1)	287.4	(21.4)	224.0	435.0
	cholp	291.2	(23.2)	289.9	(20.4)	233.0	436.8
Post-treatment	cholf	282.7	(24.9)	256.5	(26.2)	167.0	427.0
	chold	-8.5	(10.8)	-33.4	(21.3)	-113.3	29.5
	comp	74.5	(21.0)	59.9	(24.4)	0	101.0

Why do we use linear regression in randomized experiments?

- Covariate adjustment can be used to improve efficiency in randomized experiments
 - Always add interaction terms (between each covariate and treatment) to guarantee power improvement
- In completely randomized experiments
 - No need to worry about model misspecification
 - Treatment and covariates are independent