STAT347: Generalized Linear Models
Lecture 3

Today’s topics: Chapters 4.3-4.4
e Hypothesis testing for 3

e Deviance analysis of a GLM

1 Wald, likelihood-ratio and score tests

In last lecture, we have mentioned that when n is large
B = Bo ~ N(0,V,)

How to test
HO : Aﬁo = ap V.S. Hl : Aﬁo 7& ag

1.1 Wald test

Test statistics:

T = (4B~ a))” [Var(4B)] " (43 —ay)

o Var(Af) = AV,AT

If ag € R', Wald statistic can also be written as
AB = ag
Var(AB)

z =

Under Hy, Wald statistic z ~ N(0,1)

We can also obtain a 95% CI for Af, as [AB — 1.96\/\73}(145), AB +

1.961/ Var(A4B)]
e When ag € R?, then under Hy, T ~ X7

e This is the GLM R function output for the analysis of each component
Bi

1.2 A potential issue with Wald test

Let’s look at an example of using Wald test for Binomial data y; ~ Binomial(n;, p;)
where we work on the null model:
Pi

log 7= = log B _ 5
Di N — Hs
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e As we use a canonical link, the asymptotic variance is Vg, = (XTWX) ™!
where W = D?V~! = D/a(¢) = D (Lecture 2, section 2.2 and
a(¢) =1 for Binomial data).

e Dj; = m = pi(ni — pi) /mi

e An estimate Vg, = Vi =[(X;n)p(1 — p)| " where p; = p = e?/(1+
e?)

e If we are interested in testing Hy : p; = 0.5 or equivalently Hy : 5y =
0, the Wald statistics is

z=5‘/(zni)ﬁ(l—ﬁ)

e If we only have one sample with y = 23 and n = 25, then z = 11. If
y = 24 and n = 25 then z = 9.7. Why do we have a smaller z when
we have stronger evidence against the null?

e In the above specific example with only one sample, we can also obtain
the CLT of p = y/n, which result in another Wald statistics

p—0.5
V(A =p)/n

So the Wald statistics is not unique and depends on parameterization.

o We will discuss this more when we learn binary GLM (Chapter 5.3.3)

1.3 Score test
We only discuss the simple case
H()Z,B:B()ERP V.S. Hliﬁ#ﬁo

Last time we used the property of the likelihood that:

Var (b(50)) =E ((gg |B_Bo)2> = £ (L(5)

where fj is the true value of the parameter. We construct the test statistics:
. . -1,
T=—L(50)" (L(B0))  L()

We make use of the asymptotic normal distribution of L(8). Under Hy,
we have T" — Xg when n — oo.

1.4 Likelihood ratio test
We test for the null
HO . A,Bo = Qg V.S. H1 . A/Bo 7& ag

where ay € R?. The likelihood ratio test statistics is

—2logA = -2 (L(B) - L(B))
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where 3 is the MLE of 8 under the constraint A3 = ag, and A is our original
MLE of 8 without any constraint. As n — oo, under Hy

—2log A — X7
e Relationship among the three tests: Agresti Chapter 4.3.4

e Construct CI: invert tests (illustrate more in later lectures)

2 Deviance analysis

Remember that in linear regression, we use R2, defined as

iy — fi)? _ il — y)?

>y =y Wi —9)?

to evaluate how well the model fits the data. We have an analogy in GLM,
which is the deviance analysis.

RP=1-

2.1 Definition (more general than the textbook)

yo—b(0)
Consider density function f(y;0) = e e fo(y; @) at two values 6; and
05. Measure the “distance” between two distributions:

fy;01)
f(y;62)

D(6:,02) = 285, {1og } — 98, {y(01 — 0) — b(61) + b(02)} /a(6)

= 2[p1(01 — 02) — b(61) + b(62)] /a(e)

Remember the 1-to-1 mapping between p and 6, we also write D(uq, u2) =
D(em ’ 9#2)

e D(p1,p2) > 0 and the equality holds only when py = ug

e Generally, D(u1, p2) # D(p2, p1)

e KL divergence: D(u1,p2)/2

e If f is the normal density, then D(uy, u2) = (1 — p2)?/0?

Saturated model: imagine the case that we collect an infinite number of
covariates, then we can perfectly fit the data and obtain f; = y; for all
samples. Then this is called a saturated model.

Deviance between the saturated model (saturated when there is only one
observation y): i =y and another model with p:

D(y, ) =2[y(0, — 0) — b(8) + b(0)] /a(9)
=—2log[f(y,0)/f(y,0y)]

With samples (X1,41), (X2,92), -+, (Xn, yn), the total deviance in GLM
(the deviance definition in the text book)

Dy (y, ) = ZD(yi7ﬂi)
= f2ZIOg [f(yz', 0:)/ £ (i, oy)}
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This is also called the residual deviance, and compares the estimated GLM
model with the saturated model Null deviance:

ZD(yi,ﬂ)

where g = Y. y;/n. The null deviance compares the null model (x; = )
with the saturated model.

2.2 Deviance analysis for nested models
Let B = sMm where (1) € RP! and X = (X(l) X(z))
- 5(2) = .
We call M) with

() = XM

a nested model of the full model M where
g(pi) = XB.

Let ) be the MLE solution of the model M® and 2™ be the corre-
sponding estimated expectations of y in the fitted model.

Then,

Dy, i) = Da(y, i) = ~2 [ L(BY) - L(B)]

is the likelihood ratio between two models.
e Test for Hy : f® = 0. Under Hy,
D+ (y7 ﬂ(l)) - D+ (y7 la) — X;(?—pl

e Compare with the null model, we can also define “R?” in GLM:

DJr(ya [1’)

1— D

Zi D(yia ?j)

2.3 Model comparison with deviance analysis table
Say we partition our covariates as
X =(1,X0y, X2, -, X))

and X ;) € R% . We can sequentially add each partition of covariates into
the model (in some pre-determined order) and understand each partition’s
“relative contribution” with a deviance analysis table.

Define the following quantities:

° B(j) is the MLE solution of the GLM model with covariates X ) =
(1, X1y, X2, X5))

e [119) is the corresponding vector of expectations of y = (y1,--- , ) in
the fitted model.
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Model twice log-likelihood residual deviance difference
BO) (i 2L(3O) Di(y, i) = ¥, D(y,.7)
@(1) QL(@(D) D (y, M) Dy (y, i) — Dy (y, o)
ﬂ(z) 2L(ﬂ(2)) D+(y7ﬂ(2)) D+(y7ﬂ(1)) - D+(ya/l(2))
B(J) QL(B(J)) D+(y7ﬂ(J)) D+(y7ﬂ(J_l)) - D+(y7ﬂ(J))

Table 1: Deviance analysis table.

Then the deviance analysis table is shown in Table 1.

The difference of two residual deviances
Dy (y, fU=D) — D (y, i) = 2L(3W) — 2L(BU~D)

so that we can use the likelihood ratio test.

Next time: Chapters 4.4.6, 4.5 and 4.7, residuals, computation and data
examples
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