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STAT347: Generalized Linear Models

Lecture 10

Today’s topics: Chapters 7.3-7.5

• Negative Binomial GLM

• Zero inflated models: ZIP, ZINB and hurdle models

• Revisit the example of the horseshoe crab dataset

1 Model for over-dispersed counts: Negative
Binomial GLM

Think about the scenario yi ∼ Poisson(λi) but log(λi) = XT
i β+ εi indicat-

ing that Xi can not fully explain λi. Then

E(yi) = E[E(yi | λi)] = E(λi)

while

Var(yi) = E[Var(yi | λi)] + Var[E(yi | λi)] = E(λi) + Var(λi) > E(yi)

which show an over-dispersion of the distribution of yi compared with a
Poisson distribution.

• For example, we saw the over-dispersion issue in the horseshoe satel-
lites dataset in Data Example 1 and homework 1, 1.22(a).

• Over-dispersion happens in Poisson and Binomial (Multinomial) GLM
models as the variance is completely determined by the mean.

• There is no over-dispersion issue in linear models as linear models has
an extra dispersion parameter.

• We will talk about general solutions for over-dispersion issues in later
chapters.

For counts response, we can use a Negative binomial distribution to solve
the over-dispersion issue.

Negative binomial distribution: y ∼ Poisson(λ) and λ ∼ Gamma(µ, k)
[E(λ) = µ]. The probability function of y is

f(y;µ, k) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
µ

µ+ k

)y (
k

µ+ k

)k
where γ = 1/k is called a dispersion parameter.

• E(y) = µ, Var(y) = µ+ γµ2
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• Negative Binomial distribution with fixed k belongs to the exponen-
tial family: θ = log(µγ/(µγ + 1)) and b(θ) = −1/γ log(µγ + 1) =
1/γ log(1− eθ)

Negative Binomial GLM:

• We assume yi ∼ NB(µi, ki), with the link function g(µi) = XT
i β.

Typically, we assume they share the same dispersion, so γi = 1/ki ≡ γ
for all i.

• As an extension of Poisson GLM, a common link function is the log
link: g(µi) = log(µi).

• When g(µi) = log(µi), The score equation for β is∑
i

yi − µi
µi + γµ2

i

µixij =
∑
i

yi − µi
1 + γµi

xij = 0

• As E(∂2L/∂βj∂γ) = 0, asymptotically β̂ and γ̂ are independent.

Thus, the asymptotic variance of β̂ would be the same no matter
what γ is (Agresti book chapter 7.3.3).

V̂ar(β̂) = (XT ŴX)−1

2 Models for zero-inflated counts

For a Poisson distribution y ∼ Poisson(µ): P (y = 0) = e−µ

For a Negative Binomial distribution y ∼ NB(µ, k): P (y = 0) =
(

k
µ+k

)k
In practice, there may be way more 0 counts than what these distributions
can allow. Example: yi is the number of times going to a gym for the past
week and there may be a substantial proportion who never exercise (you
may see two modes in the distribution).

2.1 Zero-inflated Poisson / Negative Binomial (ZIP/ZINB)
models

The ZIP model:

yi ∼

{
0 with probability 1− φi
Poisson(λi) with probability φi

We can interpret this as having a latent binary variable Zi ∼ Bernoulli(φi).
If zi = 0 then yi = 0, and if zi = 1 then yi follows a Poisson distribution.
For the GLM model, a common assumption for the links are:

logit(φi) = XT
1iβ1, log(λi) = XT

2iβ2

• The mean is E(yi) = φiλi and the variance is

Var(yi) = φiλi[1 + (1− φi)λi] > E(yi)

So zero-inflation can also cause over-dispersion
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• We may still see over-dispersion conditional on Zi, then we can use a
ZINB model where

yi ∼

{
0 with probability 1− φi
NB(λi, k) with probability φi

• We can use MLE to solve both the ZIP and ZINB model.

2.2 Hurdle model

The ZIP/ZINB model do not allow zero deflation. The Hurdle model sep-
arates the analysis of zero counts and positive counts.

Let

y′i =

{
0 if yi = 0

1 if yi > 0

The Hurdle model assumes that y′i ∼ Bernoulli(φi) and yi | yi > 0 follows
a truncated-at-zero Poisson (Poi(µi)) / Negative Binomial (NB(µi, γ)) dis-
tribution where the mean µi. Let the untruncated probability function be
f(yi;λi), then

P (yi = k) = φi
f(k;µi)

1− f(0;µi)
, for k 6= 0

P (yi = 0) = 1− φi
For the GLM, we may assume

logitφi = XT
1iβ1, log(λi) = XT

2iβ2

• We can estimate βi and β2 separately using two separate likelihoods:
L(β1, β2) = L(β1) + L(β2)

• There is zero deflation if 1− φi ≤ f(0;µi)

3 Revisit the horseshoe crab data

Please see R notebook Example 6.


