STAT347: Generalized Linear Models Lecture 10

Today's topics: Chapters 7.3-7.5

- Negative Binomial GLM
- Zero inflated models: ZIP, ZINB and hurdle models
- Revisit the example of the horseshoe crab dataset

1 Model for over-dispersed counts: Negative Binomial GLM

Think about the scenario $y_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ but $\log \left(\lambda_{i}\right)=X_{i}^{T} \beta+\epsilon_{i}$ indicating that X_{i} can not fully explain λ_{i}. Then

$$
E\left(y_{i}\right)=E\left[E\left(y_{i} \mid \lambda_{i}\right)\right]=E\left(\lambda_{i}\right)
$$

while

$$
\operatorname{Var}\left(y_{i}\right)=E\left[\operatorname{Var}\left(y_{i} \mid \lambda_{i}\right)\right]+\operatorname{Var}\left[E\left(y_{i} \mid \lambda_{i}\right)\right]=E\left(\lambda_{i}\right)+\operatorname{Var}\left(\lambda_{i}\right)>E\left(y_{i}\right)
$$

which show an over-dispersion of the distribution of y_{i} compared with a Poisson distribution.

- For example, we saw the over-dispersion issue in the horseshoe satellites dataset in Data Example 1 and homework 1, 1.22(a).
- Over-dispersion happens in Poisson and Binomial (Multinomial) GLM models as the variance is completely determined by the mean.
- There is no over-dispersion issue in linear models as linear models has an extra dispersion parameter.
- We will talk about general solutions for over-dispersion issues in later chapters.

For counts response, we can use a Negative binomial distribution to solve the over-dispersion issue.
Negative binomial distribution: $y \sim \operatorname{Poisson}(\lambda)$ and $\lambda \sim \operatorname{Gamma}(\mu, k)$ $[\mathbb{E}(\lambda)=\mu]$. The probability function of y is

$$
f(y ; \mu, k)=\frac{\Gamma(y+k)}{\Gamma(k) \Gamma(y+1)}\left(\frac{\mu}{\mu+k}\right)^{y}\left(\frac{k}{\mu+k}\right)^{k}
$$

where $\gamma=1 / k$ is called a dispersion parameter.

- $\mathbb{E}(y)=\mu, \quad \operatorname{Var}(y)=\mu+\gamma \mu^{2}$
- Negative Binomial distribution with fixed k belongs to the exponential family: $\theta=\log (\mu \gamma /(\mu \gamma+1))$ and $b(\theta)=-1 / \gamma \log (\mu \gamma+1)=$ $1 / \gamma \log \left(1-e^{\theta}\right)$

Negative Binomial GLM:

- We assume $y_{i} \sim \operatorname{NB}\left(\mu_{i}, k_{i}\right)$, with the link function $g\left(\mu_{i}\right)=X_{i}^{T} \beta$. Typically, we assume they share the same dispersion, so $\gamma_{i}=1 / k_{i} \equiv \gamma$ for all i.
- As an extension of Poisson GLM, a common link function is the log link: $g\left(\mu_{i}\right)=\log \left(\mu_{i}\right)$.
- When $g\left(\mu_{i}\right)=\log \left(\mu_{i}\right)$, The score equation for β is

$$
\sum_{i} \frac{y_{i}-\mu_{i}}{\mu_{i}+\gamma \mu_{i}^{2}} \mu_{i} x_{i j}=\sum_{i} \frac{y_{i}-\mu_{i}}{1+\gamma \mu_{i}} x_{i j}=0
$$

- As $\mathbb{E}\left(\partial^{2} L / \partial \beta_{j} \partial \gamma\right)=0$, asymptotically $\hat{\beta}$ and $\hat{\gamma}$ are independent. Thus, the asymptotic variance of $\hat{\beta}$ would be the same no matter what γ is (Agresti book chapter 7.3.3).

$$
\widehat{\operatorname{Var}}(\hat{\beta})=\left(X^{T} \hat{W} X\right)^{-1}
$$

2 Models for zero-inflated counts

For a Poisson distribution $y \sim \operatorname{Poisson}(\mu): P(y=0)=e^{-\mu}$
For a Negative Binomial distribution $y \sim \operatorname{NB}(\mu, k): P(y=0)=\left(\frac{k}{\mu+k}\right)^{k}$
In practice, there may be way more 0 counts than what these distributions can allow. Example: y_{i} is the number of times going to a gym for the past week and there may be a substantial proportion who never exercise (you may see two modes in the distribution).

2.1 Zero-inflated Poisson / Negative Binomial (ZIP/ZINB) models

The ZIP model:

$$
y_{i} \sim \begin{cases}0 & \text { with probability } 1-\phi_{i} \\ \operatorname{Poisson}\left(\lambda_{i}\right) \quad \text { with probability } \phi_{i}\end{cases}
$$

We can interpret this as having a latent binary variable $Z_{i} \sim \operatorname{Bernoulli}\left(\phi_{i}\right)$. If $z_{i}=0$ then $y_{i}=0$, and if $z_{i}=1$ then y_{i} follows a Poisson distribution. For the GLM model, a common assumption for the links are:

$$
\operatorname{logit}\left(\phi_{i}\right)=X_{1 i}^{T} \beta_{1}, \quad \log \left(\lambda_{i}\right)=X_{2 i}^{T} \beta_{2}
$$

- The mean is $E\left(y_{i}\right)=\phi_{i} \lambda_{i}$ and the variance is

$$
\operatorname{Var}\left(y_{i}\right)=\phi_{i} \lambda_{i}\left[1+\left(1-\phi_{i}\right) \lambda_{i}\right]>E\left(y_{i}\right)
$$

So zero-inflation can also cause over-dispersion

- We may still see over-dispersion conditional on Z_{i}, then we can use a ZINB model where

$$
y_{i} \sim\left\{\begin{array}{l}
0 \quad \text { with probability } 1-\phi_{i} \\
\operatorname{NB}\left(\lambda_{i}, k\right) \quad \text { with probability } \phi_{i}
\end{array}\right.
$$

- We can use MLE to solve both the ZIP and ZINB model.

2.2 Hurdle model

The ZIP/ZINB model do not allow zero deflation. The Hurdle model separates the analysis of zero counts and positive counts.
Let

$$
y_{i}^{\prime}= \begin{cases}0 & \text { if } y_{i}=0 \\ 1 & \text { if } y_{i}>0\end{cases}
$$

The Hurdle model assumes that $y_{i}^{\prime} \sim \operatorname{Bernoulli}\left(\phi_{i}\right)$ and $y_{i} \mid y_{i}>0$ follows a truncated-at-zero Poisson $\left(\operatorname{Poi}\left(\mu_{i}\right)\right) /$ Negative Binomial (NB $\left.\left(\mu_{i}, \gamma\right)\right)$ distribution where the mean μ_{i}. Let the untruncated probability function be $f\left(y_{i} ; \lambda_{i}\right)$, then

$$
\begin{gathered}
P\left(y_{i}=k\right)=\phi_{i} \frac{f\left(k ; \mu_{i}\right)}{1-f\left(0 ; \mu_{i}\right)}, \quad \text { for } k \neq 0 \\
P\left(y_{i}=0\right)=1-\phi_{i}
\end{gathered}
$$

For the GLM, we may assume

$$
\operatorname{logit} \phi_{i}=X_{1 i}^{T} \beta_{1}, \quad \log \left(\lambda_{i}\right)=X_{2 i}^{T} \beta_{2}
$$

- We can estimate β_{i} and β_{2} separately using two separate likelihoods: $L\left(\beta_{1}, \beta_{2}\right)=L\left(\beta_{1}\right)+L\left(\beta_{2}\right)$
- There is zero deflation if $1-\phi_{i} \leq f\left(0 ; \mu_{i}\right)$

3 Revisit the horseshoe crab data

Please see R notebook Example 6.

