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STAT347: Generalized Linear Models

Lecture 11

Today’s topics: Chapters 8

• Negative Binomial GLM and Beta-Binomial GLM

• Quasi-likelihood

• Estimating equations and the Sandwich estimator

1 Violations of the variance assumptions in
GLM

In earlier models, we typically have assumptions on the variance of yi | Xi:

• In linear models, we assume Var(yi) = σ2 (or more generally Var(yi) =
wiσ

2 with known wi)

• In GLM with Binomial / Multinomial and Poisson distributions, we
assume a fixed mean-variance relationship

• In practice, we can have over-dispersed/under-dispersed data or data
with unequal variance.

• With wrong variance assumption but correct mean assumption (link

function), we typically still get consistent point estimate β̂ (though
likely not the optimal one) and unreliable uncertainty quantification.

2 Over-dispersion

When we apply the standard GLM models assuming the data are Binomial
or Poisson distributed to real data, it’s common to see over-dispersion. Let
v?(yi) be the variance of yi under our model assumption.

• v?(yi) = nipi(1 − pi) for Binomial data and v?(yi) = µi for Poisson
counts.

• Over-dispersion: the actual Var(yi) > v?(yi).

• We can check whether there is over-dispersion by plotting v̂?(yi) V.S.
(yi − µ̂i)2 (as shown in R Data Example 6)

2.1 Negative Binomial distribution for dispersed counts

This is what we have covered in Lecture 10.

• Negative binomial distribution: yi ∼ Poisson(λi) and λi ∼ Gamma(µi, ki).
Then yi ∼ NB(µi, ki)
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• We have E(yi) = µi and Var(yi) = µi + γiµ
2
i where γi = 1/ki is the

dispersion parameter.

• NB GLM: we assume that log(µi) = XT
i β and γi ≡ γ.

• The ZIP / ZINB GLM can deal with over-dispersion caused by zero
inflation

2.2 Beta-Binomial distribution for dispersed Binary
data

For the ungrouped Binary data, previous Binary GLM assumed that con-
ditional on having the same Xi, the yi are i.i.d. Bernoulli trials. But what
if the samples are clustered? (Read Chapter 8.2.1).

We may still assume independent grouped data samples, but the individual
within each group are allowed to be correlated.

Consider the grouped data. Analogous to the Poisson case, we can have
the scenario yi ∼ Binomial(ni, pi) but logit(pi) = XT

i β + εi. We will then
have

Var(yi) > nipi(1− pi)

• If you treat yi as a sum of Bernoulli variables yi =
∑
j Zij where

Zij ∼ Bernoulli(pi), then randomness in pi causes dependence among
Zij .

• The Beta-binomial distribution assumes that y ∼ Binomial(n, p) and
p ∼ beta(α1, α2). The beta distribution of p has the density function:

f(p;α1, α2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1(1− p)α2−1

and
E(p) = µ =

α1

α1 + α2

The Beta-binomial distribution then has the property that

E(y) = nµ, Var(y) = nµ(1− µ)

[
1 + (n− 1)

θ

1 + θ

]
where θ = 1/(α1 + α2).

• Beta-binomial GLM:

We assume the grouped data follows yi ∼ Beta-binomial(ni, µi, θ)
where E(yi) = µi. The relation between µi and Xi are the same as
we assumed for the standard binary GLM. For example:

logit(µi/ni) = XT
i β

Both β and θ are unknown but we can estimate using MLE.

3 Quasi-likelihood

The above solution replaces the exponential family distributions with a
more complicated parametric distribution allowing an extra dispersion pa-
rameter in the variance. Another more general solution is to only assume
a mean-variance relationship.
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Remind the the score equation for the exponential family distributed data
is:

∂L

∂βj
=
∑
i

(yi − µi)xij
Var(yi)

1

g′(µi)
= 0

• These score equations only involve E(yi) = µi and Var(yi).

• Quasi-likelihood: we replace Var(yi) by some other mean-variance
relationship that we believe can better fit the data.

• Typically, the mean-variance relationship can involves another un-
known dispersion parameter.

• Here, we DO NOT assume any other aspects of the distribution of yi
besides mean and variance.

Common forms of mean-variance relationship Var(yi) = a(µi, φ):

• Proportional: a(µi, φ) = φv?(µi).

– counts: assume a(µi, φ) = φµi

– grouped Binary data: a(µi, φ) = φµi(ni − µi)/ni

• For counts we can also assume a(µi, φ) = µi+φµ2
i as in the Negative-

Binomial distribution

• For grouped Binary data we can also assume a(µi, φ) = µi(ni −
µi) (1 + (ni − 1)φ) as in the Beta-Binomial distribution

Some related properties:

• The proportional mean-variance relationship is the easiest for the
computation of β̂ as φ cancels and does not affect solving the score
equations for β.

• Var(β̂) is affected by φ for any of the above mean-variance relation-
ships.

• Including φ helps to get a correct uncertainty quantification of β̂.

How to estimate φ? As we don’t know the likelihood of the data, we only
use moment conditions.

• When a(µi, φ) = φv?(µi), we can get β̂ thus µ̂i first without knowing
φ. Then define

X2 =

n∑
i=1

(yi − µ̂i)2

φv?(µ̂i)

We can solve φ by solving X2 = n − p (we use n − p instead of n to
correct for the degree of freedom in the estimated µ̂i), which is

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)2

v?(µ̂i)
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• For other forms of a(µ, φ), we need to solve φ and β simultaneously
from equations

ϕ1j(β, φ) =
∂L

∂βj
=
∑
i

(yi − µi)xij
a(µi, φ)

1

g′(µi)
= 0 (1)

ϕ2(β, φ) =

n∑
i=1

(yi − µi)2

a(µi, φ)
− (n− p) = 0 (2)

– E[ϕ1j(β, φ)] = 0 and E[ϕ2(β, φ)]/n → 0. Solutions β̂ and φ̂ are
called Z-estimators. Under proper regularity conditions, we can
show that both β̂ and φ̂ are consistent.

4 Estimating equations and Sandwich esti-
mator

How to estimate the variance of β̂ from the quasi-likelihood equations?
And what if we do not even know the true form of the mean-variance
relationship?

• The equations (2) is one type of estimating equations. In general, the
estimating equations for parameters θ (here θ = (β, φ) or θ = β) have
the form:

u(θ) =
∑
i

ui(θ) = 0

Denote the solution of these equations as θ̂ and the true θ as θ0.

– Consistency: roughly speaking, when p is small, if E(u(θ0))→ 0

when n → ∞, then we can have θ̂ → θ0 (with some additional
conditions).

– Variance of θ̂. Under consistency, we can estimate the asymp-
totic variance of θ̂ by first-order Taylor expansion (see later).

• The score equations

u(β) =
∑
i

(yi − µi)xij
v?(µi)

1

g′(µi)
= 0

are valid estimating equations (E[u(β0)] = 0) as long as as the link
function is correct. The response yi does not need to follow the as-
sumed exponential family distribution and v?(µi) does not need to be
the correct form of variance.

• Even the simple
∑
i(yi−µi)xij = 0 are always valid estimating equa-

tions. The problem is that sd(β̂) may be large if samples have unequal
variances.

Sandwich estimator of the asymptotic variances:

Let’s now calculate the asymptotic variance of θ̂ for

µ(θ̂) = 0

By first-order Taylor expansion, we have

0 = u(θ̂) ≈ u(θ0) + u̇(θ0)(θ̂ − θ0)
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Thus, we have
θ̂ − θ0 ≈ −u̇(θ0)−1u(θ0)

Roughly speaking, we have

• Law of large numbers:

1

n
u̇(θ0) =

1

n

n∑
i=1

u̇i(θ0)→ E

(
1

n

n∑
i=1

u̇i(θ0)

)
= A

• CLT:
1√
n
u(θ0) =

1√
n

n∑
i=1

ui(θ0) ≈ N(0, V )

Thus
Var(θ̂) ≈ A−1V A−T /n

In practice, we can estimate A and V by

Â =
1

n

n∑
i=1

u̇i(θ̂)

and

V̂ =
1

n

∑
i

ui(θ̂)ui(θ̂)
T

• We use the sample variance to approximate V without knowing the
distribution of the data

• The Sandwich estimator provides an estimate of the variance of β̂
even when model assumption is violated.

Next time: Mixed effect linear models


