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STAT347: Generalized Linear Models

Lecture 13

Today’s topics: Chapters 9.4, 9.5, 9.7

• Two examples for linear mixed effect models

• GLMM: generalized linear mixed effect model

– Binomial response: logistic-normal models

– Poisson GLMM

– Marginal likelihood MLE for GLMM: Gauss-Hermite Quadra-
ture (Chapters 9.5.1, 9.5.2)

• Example: modeling correlated survey responses

1 Two examples for LMM

1.1 Multilevel model for smoking prevention and ces-
sation study (Chapter 9.2.3)

1600 students are collected from 135 classrooms in 28 schools. We want
to understand the effect of SC (exposure to a school-based curriculum or
not), TV (exposure to a television-based prevention program or not) and
previous THK scale on the current THK scale. We have 1600 samples, but
some share the same school and some share the same classroom.

The multilevel model:

yics = β0 + β1PTHKics + β2SCics + β3TVics + us + vcs + εics

Please see the R Data example 7

1.2 Multi-subject, multi-group example

We try to understand the relationship between a student’s GPA on his/her
test scores.

• Each student has a GPA xi

• For j = 1, 2, · · · , pth type of exam, student i has a test score yij

Here are a few related modeling ideas from different perspectives

• Assume that yij are i.i.d. across students for each exam j

yij = β0j + β1jxi + εij

• To consider the fact that each student can have different ability/background,
that affects scores across all of his/her exams, there are two perspec-
tives
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– Each student has a student-specific baseline score:

yij = (β0j + ui) + β1jxi + εij

which shows that the model has a student-specific intercept
(baseline). Here there is both a student indicator and an exam
type indicator.

– scores are correlated within each student by sharing a latent
variable ui

yij = β0j + β1jxi + ui + εij

where ui
i.i.d.∼ N(0, σ2

u)

– The above two ideas are very similar. In the first idea, we can
add a prior of ui to borrow across students, and then we have
the same LMM as from the second idea. From the perspective
of the first idea, ui can also be fixed p different parameters.

– Treating ui fixed we assume less model assumptions while by
treating ui random we obtain more efficient estimate of both µi
and β.

2 Generalized linear mixed effect models

For LMM, the form is

yis = XT
isβ + ZTisui + εis

with ui and εis random. With the typical assumption that E(ui) = E(εis) =
0, we would also have marginally

E(yis) = XT
isβ

However, for GLMM, the model is

g[E(yis | ui)] = XT
isβ + ZTisui

when the link function g is non-linear, marginally after integrating out the
randomness in µi we would have

g[E(yis)] 6= XT
isβ

In GLMM with non-linear link functions, if ui does exist but we ignore
it, then we will not only have over-dispersion, we will also have a biased
estimate of β.

2.1 Binomial response

• Logistic-normal model:

logit[P (yis = 1 | ui)] = XT
isβ + ZTisui

– Item response models: yij the yes/no (correct/incorrect) re-
sponse of subject i on question j

logit[P (yij | ui)] = β0 + βj + ui
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• latent variable threshold model with random effects:

Remember for binary GLM, we can also write down the link as the
form

P (yis = 1) = F (XT
isβ)

With random effects, we can extend to the assumption:

P (yis = 1 | ui) = F (XT
isβ + ZTisui)

In other words, from the late variable threshold modeling prospective,
we assume there is a latent y?is where

y?is = XT
isβ + ZTisui + εis

where εis are i.i.d. following some distribution (normal, logistic, ...)
and we have

yis =

{
1 if y?is >= 0

0 else

Here are some properties:

– Conditional independence:

P (yi1 = a1, · · · , yidi = adi | ui = u?) = P (yi1 = a1 | ui = u?) · · ·P (yidi = adi | ui = u?)

– Marginal correlation:

cov(yis, yik) = E[cov(yis, yik | ui)] + cov[E(yis | ui), E(yik | ui)]
= 0 + cov[F (XT

isβ + ZTisui), F (XT
ikβ + ZTikui)]

where F is the cdf of −εis. If Zis = 1 (the random intercept
model), then cov(yis, yik) > 0.

Marginally,
E(yis) = P (yis = 1) 6= F (XT

isβ)

After some calculations to integrate out the random variable ui (see page
308), we have

• For the probit link random-intercept model P [yis = 1 | ui] = Φ(XT
isβ+

ui),

P (yis = 1) =

∫
P (yis = 1 | ui = u)f(u)du =

∫
P (εi ≤ u+Xisβ)f(u)du

where εi ∼ N(0, 1) and f(u) is the density of ui. Since εi − ui ∼
N(0, 1 + σ2

u), we have P (yis = 1) = Φ(Xisβ/
√

1 + σ2
u), so

g(P (yis = 1)) =
XT
isβ√

1 + σ2
u

• For the logistic-normal model:

g(P (yis = 1)) ≈ XT
isβ√

1 + σ2
u/c

2

where c ≈ 1.7

• Why does the β in the random effect model typically larger than the
marginal relationship between x and y? Figure 9.2 (compare with
linear regression)
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2.2 Poisson GLMM

log[E(yis | ui)] = XT
isβ + ZTisui

Equivalently,

E[yis | ui] = eZ
T
isuieX

T
isβ

For the random-intercept model where Zis = 1 and ui ∼ N(0, σ2
u), we have

E(yis) = eX
T
isβ+σ

2
u/2

The coefficients β does not change except for the intercept.

2.3 Fitting GLMM with Gauss-Hermite Quadrature
methods

Fitting GLMM is more complicated than fitting LMM as the marginal
distribution of the observations {yis} do not have a closed form. You may
learn other methods like MCMC and EM in the future. Here we very briefly
discuss how to approximate the marginal likelihood numerically.

The marginal likelihood

l(β,Σu; y) = f(y;β,Σu) =

∫
f(y | u, β)f(u; Σu)du

This typically do not have a closed form

Gauss-Hermite Quadrature methods: approximate the integral by a weighted
sum ∫

h(u)exp(−u2)du ≈
q∑

k=1

ckh(sk)

• the tabulated weights {ck} and quadrature points {sk} are the roots
of Hermite polynomials.

• The approximation is more more accurate with larger q. For more
details, read chapter 9.5.2.

• The approximated likelihood is maximized with optimization algo-
rithms such as Newton’s method

Laplace approximation: the marginal density of our data has the form∫
el(u)du ≈

∫
el(u0)+

1
2 l

′′(u0)(u−u0)
2

du = el(u0)

√
2π

|l′′(u0)|

Here u0 is the global maximum of l(u) satisfying l′(u0) = 0. Laplace ap-
proximation can be used when u is multi-dimensional.

3 Example: modeling correlated survey re-
sponses (Chapter 9.7)

See R Data Example 7.


