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STAT347: Generalized Linear Models

Lecture 3

Today’s topics: Chapters 4.3-4.4

• Hypothesis testing for β

• Deviance analysis of a GLM

1 Wald, likelihood-ratio and score tests

In last lecture, we have mentioned that when n is large

β̂ − β0
·∼ N(0, Vβ0

)

How to test
H0 : Aβ0 = a0 V.S. H1 : Aβ0 6= a0

1.1 Wald test

Test statistics:

T = (Aβ̂ − a0)T
[
V̂ar(Aβ̂)

]−1

(Aβ̂ − a0)

• V̂ar(Aβ̂) = AVβ̂A
T

• If a0 ∈ R1, Wald statistic can also be written as

z =
Aβ̂ − a0√
V̂ar(Aβ̂)

• Under H0, Wald statistic z
·∼ N(0, 1)

• We can also obtain a 95% CI for Aβ0 as [Aβ̂ − 1.96

√
V̂ar(Aβ̂), Aβ̂ +

1.96

√
V̂ar(Aβ̂)]

• When a0 ∈ Rd, then under H0, T
·∼ X 2

d

• This is the GLM R function output for the analysis of each component
βj

1.2 A potential issue with Wald test

Let’s look at an example of using Wald test for Binomial data yi ∼ Binomial(ni, pi)
where we work on the null model:

log
pi

1− pi
= log

µi
ni − µi

= β0
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• As we use a canonical link, the asymptotic variance is Vβ0 = (XTWX)−1

where W = D2V −1 = D/a(φ) = D (Lecture 2, section 2.2 and
a(φ) = 1 for Binomial data).

• Dii = 1
g′(µi)

= µi(ni − µi)/ni

• An estimate V̂β0 = Vβ̂ = [(
∑
i ni)p̂(1− p̂)]−1 where p̂i = p̂ = eβ̂/(1 +

eβ̂)

• If we are interested in testing H0 : pi ≡ 0.5 or equivalently H0 : β0 =
0, the Wald statistics is

z = β̂

√
(
∑
i

ni)p̂(1− p̂)

• If we only have one sample with y = 23 and n = 25, then z = 11. If
y = 24 and n = 25 then z = 9.7. Why do we have a smaller z when
we have stronger evidence against the null?

• In the above specific example with only one sample, we can also obtain
the CLT of p̂ = y/n, which result in another Wald statistics

z =
p̂− 0.5√
p̂(1− p̂)/n

.

So the Wald statistics is not unique and depends on parameterization.

• We will discuss this more when we learn binary GLM (Chapter 5.3.3)

1.3 Score test

We only discuss the simple case

H0 : β = β0 ∈ Rp V.S. H1 : β 6= β0

Last time we used the property of the likelihood that:

Var
(
L̇(β0)

)
= E

((
∂L

∂β
|β=β0

)2
)

= −E
(
L̈(β0)

)
where β0 is the true value of the parameter. We construct the test statistics:

T = −L̇(β0)T
(
L̈(β0)

)−1

L̇(β0)

We make use of the asymptotic normal distribution of L̇(β0). Under H0,
we have T → X 2

p when n→∞.

1.4 Likelihood ratio test

We test for the null

H0 : Aβ0 = a0 V.S. H1 : Aβ0 6= a0

where a0 ∈ Rd. The likelihood ratio test statistics is

−2 log Λ = −2
(
L(β̃)− L(β̂)

)
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where β̃ is the MLE of β under the constraint Aβ = a0, and β̂ is our original
MLE of β without any constraint. As n→∞, under H0

−2 log Λ→ X 2
d

• Relationship among the three tests: Agresti Chapter 4.3.4

• Construct CI: invert tests (illustrate more in later lectures)

2 Deviance analysis

Remember that in linear regression, we use R2, defined as

R2 = 1−
∑
i(yi − µ̂i)2∑
i(yi − ȳ)2

=

∑
i(µ̂i − ȳ)2∑
i(yi − ȳ)2

to evaluate how well the model fits the data. We have an analogy in GLM,
which is the deviance analysis.

2.1 Definition (more general than the textbook)

Consider density function f(y; θ) = e
yθ−b(θ)
a(φ) f0(y;φ) at two values θ1 and

θ2. Measure the “distance” between two distributions:

D(θ1, θ2) = 2Eθ1
{

log
f(y; θ1)

f(y; θ2)

}
= 2Eθ1 {y(θ1 − θ2)− b(θ1) + b(θ2)} /a(φ)

= 2 [µ1(θ1 − θ2)− b(θ1) + b(θ2)] /a(φ)

Remember the 1-to-1 mapping between µ and θ, we also write D(µ1, µ2) =
D(θµ1

, θµ2
)

• D(µ1, µ2) ≥ 0 and the equality holds only when µ1 = µ2

• Generally, D(µ1, µ2) 6= D(µ2, µ1)

• KL divergence: D(µ1, µ2)/2

• If f is the normal density, then D(µ1, µ2) = (µ1 − µ2)2/σ2

Saturated model: imagine the case that we collect an infinite number of
covariates, then we can perfectly fit the data and obtain µ̂i = yi for all
samples. Then this is called a saturated model.

Deviance between the saturated model (saturated when there is only one
observation y): µ̂ = y and another model with µ:

D(y, µ) =2 [y(θy − θ)− b(θy) + b(θ)] /a(φ)

=− 2 log [f(y, θ)/f(y, θy)]

With samples (X1, y1), (X2, y2), · · · , (Xn, yn), the total deviance in GLM
(the deviance definition in the text book)

D+(y, µ̂) =
∑
i

D(yi, µ̂i)

= −2
∑
i

log
[
f(yi, θ̂i)/f(yi, θyi)

]
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This is also called the residual deviance, and compares the estimated GLM
model with the saturated model Null deviance:∑

i

D(yi, ȳ)

where ȳ =
∑
i yi/n. The null deviance compares the null model (µi ≡ µ)

with the saturated model.

2.2 Deviance analysis for nested models

Let β =

(
β(1)

β(2)

)
where β(1) ∈ Rp1 and X =

(
X(1) X(2)

)
.

We call M(1) with
g(µi) = X(1)β(1)

a nested model of the full model M where

g(µi) = Xβ.

Let β̂(1) be the MLE solution of the model M(1) and µ̂(1) be the corre-
sponding estimated expectations of y in the fitted model.

Then,

D+(y, µ̂(1))−D+(y, µ̂) = −2
[
L(β̂(1))− L(β̂)

]
is the likelihood ratio between two models.

• Test for H0 : β(2) = 0. Under H0,

D+(y, µ̂(1))−D+(y, µ̂)→ X 2
p−p1

• Compare with the null model, we can also define “R2” in GLM:

1− D+(y, µ̂)∑
iD(yi, ȳ)

2.3 Model comparison with deviance analysis table

Say we partition our covariates as

X = (1, X(1), X(2), · · · , X(J))

and X(j) ∈ Rdj . We can sequentially add each partition of covariates into
the model (in some pre-determined order) and understand each partition’s
“relative contribution” with a deviance analysis table.

Define the following quantities:

• β̂(j) is the MLE solution of the GLM model with covariates X(j) =
(1, X(1), X(2), · · · , X(j))

• µ̂(j) is the corresponding vector of expectations of y = (y1, · · · , yn) in
the fitted model.
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Model twice log-likelihood residual deviance difference df Compare with

β̂(0) (null) 2L(β̂(0)) D+(y, µ̂(0)) =
∑
iD(yi, ȳ)

β̂(1) 2L(β̂(1)) D+(y, µ̂(1)) D+(y, µ̂(0))−D+(y, µ̂(1)) d1 χ2
d1

β̂(2) 2L(β̂(2)) D+(y, µ̂(2)) D+(y, µ̂(1))−D+(y, µ̂(2)) d2 χ2
d2

...

β̂(J) 2L(β̂(J)) D+(y, µ̂(J)) D+(y, µ̂(J−1))−D+(y, µ̂(J)) dJ χ2
dJ

Table 1: Deviance analysis table.

Then the deviance analysis table is shown in Table 1.

The difference of two residual deviances

D+(y, µ̂(j−1))−D+(y, µ̂(j)) = 2L(β̂(j))− 2L(β̂(j−1))

so that we can use the likelihood ratio test.

Next time: Chapters 4.4.6, 4.5 and 4.7, residuals, computation and data
examples


