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STAT347: Generalized Linear Models

Lecture 4

Today’s topics: Agresi Chapters 4.4.6, 4.5, 4.7

• Model diagnosis with residuals

• Computation of the ML estimate

• Example: building a GLM

1 Model checking with the residuals

As in the linear models, we can examine the residuals to help us check
whether a model fits poor or not, and whether there are any outliers in the
observations.

Three types of residuals:

• Pearson residual:

ei =
yi − µ̂i√
v(µ̂i)

where v(µ̂i) = V̂ar(yi). For instance, if yi ∼ Poisson(µi) then v(µ̂i) =

µ̂i. As we have shown in Lecture 2, in general v(µ̂i) = b′′(θ̂i)a(φ̂).

• Deviance residual:

di =
√
D(yi, µ̂i)× sign(yi − µ̂i)

For instance, for the Gaussian linear model, D(yi, µ̂i) = (yi−µ̂i)2/σ2,
and the deviance residual is the same as the Pearson residual. As a
rule of thumb, an observation is fitted poorly by the GLM model if
|di| > 2.

• As in the linear models, the mean of ei is typically smaller than 1 as
µ̂i is estimated. After some calculations (see Chapter 4.4.5), one can
compute a more accurate variance of yi − µ̂i.
Standardized residual:

ri =
ei√

1− ĥii
where hii is the ith diagonal element of the HW defined equation
(4.19) of the Agresti chapter 4.4.5.

2 Computation

Let us discuss the case of a(φ) = 1 to simplify notation. As φ does not

affect the point estimate of β, when a(φ) is not a constant, one can get β̂

from the score equations first. Then one can estimate φ from MLE with β̂
plugged in.
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Score equation:
L̇(β) = XTDV −1(y − µ) = 0

where
L(β) =

∑
i

[yiθi − b(θi)]

(This is the log-likelihood ignoring the term involving φ that does not affect
the estimation of β)

2.1 Newton’s method

Second-order approximation of L(β)

L(β) ≈ L(β(t)) + L̇(β(t))T (β − β(t)) +
1

2
(β − β(t))T L̈(β(t))(β − β(t))

at tth iteration. If L̈(β(t)) � 0, then maximizing the second-order approxi-
mation is equivalent to solving

L̇(β) ≈ L̇(β(t)) + L̈(β(t))(β − β(t)) = 0

We have
β(t+1) = β(t) − L̈(β(t))−1L̇(β(t))

• Newton’s method is a general algorithm for optimizing twice-differentiable
functions.

• Generally converge to the global maximum if L(β) is strongly concave

– If g(·) is the canonical link, then L(β) is concave in β

−L̈(β(t)) = XTW (t)X =
1

a(φ)
XTV (t)X = −E

(
L̈(β(t))

)
� 0

We showed the first equality in section 2.1 of lecture 2. This
shows that the though observed log-likelihood function L(β) is
random, its hessian is a constant.

– If g(·) is a general link, then L(β) is NOT guaranteed to be
concave in β

– If −L̈(β(t)) is not non-negative, than step i does not maximize
the quadratic approximation and Newton’s method may not con-
verge.

– We can use another quadratic approximation that works better
in practice: Fisher scoring method

2.2 Fisher scoring method

In lecture 2, we showed that −E
(
L̈(β)

)
� 0 for any β.

Instead of using the Hessian L̈(β(t)), use its expectation

J (t) = E
(
L̈(β(t))

)
= −XTW (t)X

instead of L̈(β(t)) itself in the second-order approximation. Each iteration
becomes:

β(t+1) = β(t) −
(
J (t)

)−1
L̇(β(t))
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2.3 Iteratively reweighted least squares (IRLS)

We can make a connection between the optimization for GLM and weighted
least squares estimation.

Recall the score equation:

L̇(β) = XTDV −1(y − µ) = 0

where V = diag(Var(y1), · · · ,Var(yn)) andD = diag (g′(µ1), · · · , g′(µn))
−1

,
y = (y1, · · · , yn) and µ = (µ1, · · · , µn).

Also in lecture 2, we used the notation ηi = XT
i β = g(µi). Thus, D =

diag
(
∂µ1

∂η1
, · · · , ∂µn

∂ηn

)
. We also defined the diagnoal matrix W = D2V −1.

Thus,
L̇(β) = XTDV −1(y − µ) = XTWD−1(y − µ)

We can make a first order approximation of µ

µ = µ(t) +D(t)(η − η(t))

then
L̇(β) ≈ XTW (t)(z(t) −Xβ)

where

z(t) = Xβ(t) +
(
D(t)

)−1
(y − µ(t))

is a linear approximation of η at the tth iteration.

Thus, at the t+ 1th iteration, we solve

XTW (t)(z(t) −Xβ) = 0

which can be considered as a weighted linear regression with observations

z
(t)
i and weight wi for each sample i.

• IRLS is equivalent to Fisher scoring. The tth step of Fisher scoring
satisfy

(XTW (t)X)β(t+1) = XTW (t)Xβ(t) +XTD(t)(V (t))−1(y − µ(t))

= XTW (t)
[
Xβ(t) + (D(t))−1(y − µ(t))

]
= XTW (t)z(t)

• weight matrix W (t) ≈ Var
(
z(t)
)−1

3 Data examples

Please check the R notebook 2.

Next time: Chapter 5.1 - 5.2, binary data model, application scenarios


