STAT347: Generalized Linear Models
Lecture 4

Today’s topics: Agresi Chapters 4.4.6, 4.5, 4.7
e Model diagnosis with residuals
e Computation of the ML estimate
e FExample: building a GLM

1 Model checking with the residuals

As in the linear models, we can examine the residuals to help us check
whether a model fits poor or not, and whether there are any outliers in the
observations.

Three types of residuals:
e Pearson residual: .
Yi — M
v(f1;)

€; =

where v(ji;) = \7a\r(yl) For instance, if y; ~ Poisson(u;) then v(fi;) =

fi;. As we have shown in Lecture 2, in general v(ji;) = b”(0;)a(®).

e Deviance residual:
di = \/D(yi, 1) x sign(y; — fi;)

For instance, for the Gaussian linear model, D(y;, f1;) = (y; — fi:)%/0?,
and the deviance residual is the same as the Pearson residual. As a
rule of thumb, an observation is fitted poorly by the GLM model if
‘dq‘ > 2.

e As in the linear models, the mean of e; is typically smaller than 1 as
fi; is estimated. After some calculations (see Chapter 4.4.5), one can
compute a more accurate variance of y; — [i;.

Standardized residual: o

V1 — hy
where h;; is the ith diagonal element of the Hy, defined equation
(4.19) of the Agresti chapter 4.4.5.

ri =

2 Computation

Let us discuss the case of a(¢) = 1 to simplify notation. As ¢ does not
affect the point estimate of 8, when a(¢) is not a constant, one can get B
from the score equations first. Then one can estimate ¢ from MLE with /3
plugged in.
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Score equation: _
L(B) = X"DV Yy —p) =0
where

L(B) = Z[ylez —b(0:)]

3

(This is the log-likelihood ignoring the term involving ¢ that does not affect
the estimation of 3)

2.1 Newton’s method

Second-order approximation of L(3)
L(B) ~ L(B®) + L(BO)T (8 — 89) + 5(8 — BO)TL(B80) (8 - 5©)

at tth iteration. If I;(B(t)) =< 0, then maximizing the second-order approxi-
mation is equivalent to solving

L(B) ~ L(BD) + L(BW) (B — ) =0

We have
FIEHD = 5O — L(50) ()

e Newton’s method is a general algorithm for optimizing twice-differentiable

functions.
e Generally converge to the global maximum if L(f) is strongly concave

— If g(-) is the canonical link, then L(5) is concave in S
. 1 .
_E(B®) = XxTWO x = WXTV(”X — R (L(,B(t))) =0
a

We showed the first equality in section 2.1 of lecture 2. This
shows that the though observed log-likelihood function L(f) is
random, its hessian is a constant.

— If g(-) is a general link, then L(8) is NOT guaranteed to be
concave in

- If —f/(ﬁ(t)) is not non-negative, than step ¢ does not maximize
the quadratic approximation and Newton’s method may not con-
verge.

— We can use another quadratic approximation that works better
in practice: Fisher scoring method

2.2 Fisher scoring method

In lecture 2, we showed that —E (L(ﬂ)) = 0 for any f.

Instead of using the Hessian E(ﬁ(t)), use its expectation
JO =E (L(BU))) = _XTw®x

instead of f/(ﬁ(t)) itself in the second-order approximation. Each iteration
becomes:

B+ Z g0 _ (J(t))_l (3"
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2.3 Iteratively reweighted least squares (IRLS)

We can make a connection between the optimization for GLM and weighted
least squares estimation.

Recall the score equation:
L(B) = X"DV "y —p) =0

where V' = diag(Var(y1),- - - , Var(y,)) and D = diag (¢’ (1), - - - ,g’(,un))fl,
y= (Y1, yn) and p = (1, , o).
Also in lecture 2, we used the notation 1, = X! 3 = g(u;). Thus, D =

diag (22, ... 82 We also defined the diagnoal matrix W = D2V !,
om Onn

Thus,

L(B)=X"DV "y —p) = X" WDy — p)
We can make a first order approximation of p
p=p® + DOy —n®)

then '
L(B) =~ XTWW (2 — X p)

where )
20— x50 4 (Dm) (y — u®)

is a linear approximation of 7 at the tth iteration.
Thus, at the ¢t 4+ 1th iteration, we solve

XTw®(® - x6)=0

which can be considered as a weighted linear regression with observations

zft) and weight w; for each sample 3.

e IRLS is equivalent to Fisher scoring. The tth step of Fisher scoring
satisfy

(XTw® x)pt+D = XTw® xp® 4 XTD(t)(V(t))—l(y _ M(t))
— xTw® [XW) (DO (y - u“))}
= XTw® )

e weight matrix W® ~ Var (Z(t))71

3 Data examples

Please check the R notebook 2.

Next time: Chapter 5.1 - 5.2, binary data model, application scenarios



