STAT347: Generalized Linear Models Lecture 4

Today's topics: Agresi Chapters 4.4.6, 4.5, 4.7

- Model diagnosis with residuals
- Computation of the ML estimate
- Example: building a GLM

1 Model checking with the residuals

As in the linear models, we can examine the residuals to help us check whether a model fits poor or not, and whether there are any outliers in the observations.

Three types of residuals:

• Pearson residual:

$$e_i = \frac{y_i - \hat{\mu}_i}{\sqrt{v(\hat{\mu}_i)}}$$

where $v(\hat{\mu}_i) = \widehat{\operatorname{Var}}(y_i)$. For instance, if $y_i \sim \operatorname{Poisson}(\mu_i)$ then $v(\hat{\mu}_i) = \hat{\mu}_i$. As we have shown in Lecture 2, in general $v(\hat{\mu}_i) = b''(\hat{\theta}_i)a(\hat{\phi})$.

• Deviance residual:

$$d_i = \sqrt{D(y_i, \hat{\mu}_i)} \times \operatorname{sign}(y_i - \hat{\mu}_i)$$

For instance, for the Gaussian linear model, $D(y_i, \hat{\mu}_i) = (y_i - \hat{\mu}_i)^2 / \sigma^2$, and the deviance residual is the same as the Pearson residual. As a rule of thumb, an observation is fitted poorly by the GLM model if $|d_i| > 2$.

• As in the linear models, the mean of e_i is typically smaller than 1 as $\hat{\mu}_i$ is estimated. After some calculations (see Chapter 4.4.5), one can compute a more accurate variance of $y_i - \hat{\mu}_i$.

Standardized residual:

$$r_i = \frac{e_i}{\sqrt{1 - \hat{h}_{ii}}}$$

where h_{ii} is the *i*th diagonal element of the H_W defined equation (4.19) of the Agresti chapter 4.4.5.

2 Computation

Let us discuss the case of $a(\phi) = 1$ to simplify notation. As ϕ does not affect the point estimate of β , when $a(\phi)$ is not a constant, one can get $\hat{\beta}$ from the score equations first. Then one can estimate ϕ from MLE with $\hat{\beta}$ plugged in.

Score equation:

$$\dot{L}(\beta) = X^T D V^{-1} (y - \mu) = 0$$

where

$$L(\beta) = \sum_{i} [y_i \theta_i - b(\theta_i)]$$

(This is the log-likelihood ignoring the term involving ϕ that does not affect the estimation of β)

2.1 Newton's method

Second-order approximation of $L(\beta)$

$$L(\beta) \approx L(\beta^{(t)}) + \dot{L}(\beta^{(t)})^T (\beta - \beta^{(t)}) + \frac{1}{2} (\beta - \beta^{(t)})^T \ddot{L}(\beta^{(t)}) (\beta - \beta^{(t)})$$

at tth iteration. If $\ddot{L}(\beta^{(t)}) \leq 0$, then maximizing the second-order approximation is equivalent to solving

$$\dot{L}(\beta) \approx \dot{L}(\beta^{(t)}) + \ddot{L}(\beta^{(t)})(\beta - \beta^{(t)}) = 0$$

We have

$$\beta^{(t+1)} = \beta^{(t)} - \ddot{L}(\beta^{(t)})^{-1}\dot{L}(\beta^{(t)})$$

- Newton's method is a general algorithm for optimizing twice-differentiable functions.
- Generally converge to the global maximum if $L(\beta)$ is strongly concave
 - If $g(\cdot)$ is the canonical link, then $L(\beta)$ is concave in β

$$-\ddot{L}(\beta^{(t)}) = X^T W^{(t)} X = \frac{1}{a(\phi)} X^T V^{(t)} X = -\mathbb{E}\left(\ddot{L}(\beta^{(t)})\right) \succeq 0$$

We showed the first equality in section 2.1 of lecture 2. This shows that the though observed log-likelihood function $L(\beta)$ is random, its hessian is a constant.

- If $g(\cdot)$ is a general link, then $L(\beta)$ is NOT guaranteed to be concave in β
- If $-\ddot{L}(\beta^{(t)})$ is not non-negative, than step *i* does not maximize the quadratic approximation and Newton's method may not converge.
- We can use another quadratic approximation that works better in practice: Fisher scoring method

2.2 Fisher scoring method

In lecture 2, we showed that $-\mathbb{E}(\ddot{L}(\beta)) \succeq 0$ for any β . Instead of using the Hessian $\ddot{L}(\beta^{(t)})$, use its expectation

$$J^{(t)} = \mathbb{E}\left(\ddot{L}(\beta^{(t)})\right) = -X^T W^{(t)} X$$

instead of $\ddot{L}(\beta^{(t)})$ itself in the second-order approximation. Each iteration becomes:

$$\beta^{(t+1)} = \beta^{(t)} - \left(J^{(t)}\right)^{-1} \dot{L}(\beta^{(t)})$$

2.3 Iteratively reweighted least squares (IRLS)

We can make a connection between the optimization for GLM and weighted least squares estimation.

Recall the score equation:

$$\dot{L}(\beta) = X^T D V^{-1}(y - \mu) = 0$$

where $V = \text{diag}(\text{Var}(y_1), \cdots, \text{Var}(y_n))$ and $D = \text{diag}(g'(\mu_1), \cdots, g'(\mu_n))^{-1}$, $y = (y_1, \cdots, y_n)$ and $\mu = (\mu_1, \cdots, \mu_n)$. Also in lecture 2, we used the notation $\eta_i = X_i^T \beta = g(\mu_i)$. Thus, $D = \text{diag}\left(\frac{\partial \mu_1}{\partial \eta_1}, \cdots, \frac{\partial \mu_n}{\partial \eta_n}\right)$. We also defined the diagnoal matrix $W = D^2 V^{-1}$. Thus,

$$\dot{L}(\beta) = X^T D V^{-1}(y - \mu) = X^T W D^{-1}(y - \mu)$$

We can make a first order approximation of μ

$$\mu = \mu^{(t)} + D^{(t)}(\eta - \eta^{(t)})$$

then

$$\dot{L}(\beta) \approx X^T W^{(t)} (z^{(t)} - X\beta)$$

where

$$z^{(t)} = X\beta^{(t)} + \left(D^{(t)}\right)^{-1} \left(y - \mu^{(t)}\right)$$

is a linear approximation of η at the $t{\rm th}$ iteration.

Thus, at the t + 1th iteration, we solve

$$X^T W^{(t)}(z^{(t)} - X\beta) = 0$$

which can be considered as a weighted linear regression with observations $z_i^{(t)}$ and weight w_i for each sample *i*.

 \bullet IRLS is equivalent to Fisher scoring. The $t{\rm th}$ step of Fisher scoring satisfy

$$(X^T W^{(t)} X) \beta^{(t+1)} = X^T W^{(t)} X \beta^{(t)} + X^T D^{(t)} (V^{(t)})^{-1} (y - \mu^{(t)})$$
$$= X^T W^{(t)} \left[X \beta^{(t)} + (D^{(t)})^{-1} (y - \mu^{(t)}) \right]$$
$$= X^T W^{(t)} z^{(t)}$$

• weight matrix $W^{(t)} \approx \operatorname{Var}\left(z^{(t)}\right)^{-1}$

3 Data examples

Please check the R notebook 2.

Next time: Chapter 5.1 - 5.2, binary data model, application scenarios