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STAT347: Generalized Linear Models

Lecture 5

Today’s topics: Chapters 5.1 - 5.2

• Binary data model: data input, link function

• Application scenarios: 2× 2 table, case-control study, classification

1 Binary/binomial data model

If the observation yi is binomial

yi ∼ Binomial(ni, pi)

and probability function:

f(yi) =

(
ni
yi

)
pyii (1− pi)ni−yi =

(
ni
yi

)(
pi

1− pi

)yi
(1− pi)ni

If ni = 1, then yi is a 0/1 binary data point (follows a Bernoulli distribu-
tion).

1.1 Data input

If Xi are categorical variables, then we may have samples with the same
Xi and we can group them together.

• ungrouped data: each ni = 1 and some samples have the same Xi,
thus they share the same pi

• a grouped sample ỹk for group k contains nk ungrouped samples
whose Xi are the same we only have group level covariates). As
pi = g−1(XT

i β), samples within the same group share the same mean.
Let Ik = {i : i in group k} be the set of individual binary samples
and let nk = |Ik|. Then the response for the group samples is:

ỹk =
∑
i∈Ik

yi ∼ Binomial(nk, pk)

• The grouped data follows the Binomial distribution because we as-
sume that the samples are independent within each group.

• If there are some unmeasured group-level covariates that affect all
samples in the group, it can bring in extra dependency and an inflated
variance of ỹi. (we will discuss this issue later in detail in Chapter 8
and 9.)
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• Let N =
∑
k nk The likelihood for the ungrouped data is:

f(y1, y2, · · · , yN ) =
∏
i

pyii (1− pi)1−yi

=
∏
k

∏
i∈Ik

pỹkk (1− pk)nk−ỹk

The likelihood for the corresponding grouped data is:

f(ỹ1, ỹ2, · · · , ỹK) =
∏
k

(
nk
yk

) ∏
i∈Ik

pỹkk (1− pk)nk−ỹk

The likelihood is not the same between the grouped data and un-
grouped data. However, the log-likelihood function only differs by a
constant, thus the GLM solution does not change.

1.2 Link function

The expectation of each sample is E(yi) = nipi where ni is a known con-
stant. Thus we define the link function as a function of pi

g(pi) = XT
i β

Equivalently,
pi = g−1(XT

i β) ∈ [0, 1]

If g is a one-to-one mapping (otherwise there can be identifiability issues)
and continuous function, then g−1 should be monotone. In that case, one
natural choice of g−1 is to make it as a cdf of some distribution. We then

can denote F (z) = g−1(z) as some cdf function. Let εi
i.i.d.∼ F (·)

pi = F (XT
i β) = P(εi ≤ XT

i β) = P
(
XT
i β − εi >= 0

)
If yi is binary, this indicates that yi follows the distribution

Yi =

{
1 if XT

i β − εi >= 0

0 else

This is also called a latent variable threshold model.

Popular latent variable threshold models:

• The probit link: F (z) is the cdf of a standard Gaussian distribution

pi = P
(
XT
i β − εi >= 0

)
= P

(
XT
i β + εi >= 0

)
where εi ∼ N(0, 1). Let the hidden variable be y?i = XT

i β + εi, then
it goes to the definition of the probit link that some of you may be
more familiar with:

Yi =

{
1 if y?i >= 0

0 else

• The logit link: F (z) is the cdf of a standard logistic distribution

F (z) =
ez

1 + ez
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– The link function is called the logit link: g(pi) = logit(pi) =

log
(

pi
1−pi

)
– The logit link is the canonical link of the Binomial distribution

• The identity link: F (z) is the cdf of a uniform [0, 1] distribution and
pi = XT

i β

– The identity link corresponds to a uniform cdf only when XT
i β ∈

[0, 1] for all samples.

– Because of the range issue, when using R to solve a binomial
GLM with identity link, there can often be numerical problems
(such as the error we saw in the earlier data example in Section
1.4, Data Example 1).

• The log-log link: F (z) is the cdf of a standard double-exponential
distribution (Gumbel distribution)

F (z) = e−e
−z

– The link function is called the log-log link:

g(pi) = − log[− log(pi)] = XT
i β

– Both the probit and logit link assumes a symmetric εi (around 0).
So we implicitly assumed that the response curve is symmetric
at 0.5

g(pi) = −g(1− pi)

One can use the log-log link if such assumption is severely vi-
olated (or use a complementary log-log link depending on the
shape of the response curve). Read Chapter 5.6.3 for more de-
tails (also discussed how one may choose an appropriate link
function in practice).

2 Some applications of a Binary GLM

2.1 2× 2 table

When Both the Xi and yi are binary, the grouped data can be represented
by a 2× 2 table.

• Number of grouped samples: 2.

• Number of total ungrouped observations: N = n1 + n2 (Table 5.2 of
the Agresti book)

• Assume that (Xi, yi) are i.i.d. Odds ratio (OR) for the response
variable Y :

OR =
P(Y = 1 | X = 1)/P(Y = 0 | X = 1)

P(Y = 1 | X = 0)/P(Y = 0 | X = 0)

• Interpretation of the coefficient β1 in the binary GLM with logit link:
logit(pi) = β0 + β1Xi

eβ1 = OR
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2.2 Case-control study

We want to know

Risk factor X
effect?−→ Outcome Y

Xi = 1/0 if the person is a smoker/non-smoker and yi = 1/0 if the person
develops cancer/is a healthy control.

• Prospective design: randomly select smokers and non-smokers from
the population and observe whether they will develop cancer in the
future.

– We can compare E(Y = 1 | X = 1) with E(Y = 1 | X = 0)

– Drawbacks: the study takes a long time; lung cancer is a rare
disease, may observe very few cancer samples.

• Case-control study (retrospective): We randomly select some samples
from patients who develop cancer and some samples from healthy
controls. Then, we check whether the person has been a smoker or
not.

– We can now only compare E(X = 1 | Y = 1) with E(X = 1 |
Y = 0)

– The study takes a shorter time, and we can obtain enough cancer
cases.

Why is the case-control study popular?

OR =
P(Y = 1 | X = 1)/P(Y = 0 | X = 1)

P(Y = 1 | X = 0)/P(Y = 0 | X = 0)

=
P(X = 1 | Y = 1)/P(X = 0 | Y = 1)

P(X = 1 | Y = 0)/P(X = 0 | Y = 0)

We can also include other covariates X̃:

OR |X̃=x =
P(Y = 1 | X = 1, X̃ = x)/P(Y = 0 | X = 1, X̃ = x)

P(Y = 1 | X = 0, X̃ = x)/P(Y = 0 | X = 0, X̃ = x)

=
P(X = 1 | Y = 1, X̃ = x)/P(X = 0 | Y = 1, X̃ = x)

P(X = 1 | Y = 0, X̃ = x)/P(X = 0 | Y = 0, X̃ = x)

Thus, we can study estimate the odds ratio of the risk factor from case-
control studies.

Thus, building the logistic regression using case-control study samples is
the same as building the model using prospective samples:

eβ1 ≡ OR |X̃=x

2.3 Classification

Binary GLM models can be used for classification.

Some concepts in evaluating the classification result

• A classification table (Table 5.1 of the Agresti book): y v.s. ŷ
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• Sensitivity (recall, true positive rate, tpr): P (ŷ = 1 | y = 1)

• Specificity: P (ŷ = 0 | y = 0)

• False positive rate (fpr): 1− specificity = P (ŷ = 1 | y = 0)

• ROC curve (Figure 5.2 of the Agresti book): fpr v.s. sensitivity

Next time: Chapter 5.3 - 5.5, 5.7, binary GLM: inference, model fitting and
examples


