STAT347: Generalized Linear Models
Lecture 5

Today’s topics: Chapters 5.1 - 5.2
e Binary data model: data input, link function

e Application scenarios: 2 x 2 table, case-control study, classification

1 Binary/binomial data model

If the observation y; is binomial
y; ~ Binomial(n;, p;)

and probability function:

Flyi) = (Z) Py (L —p)" Y = (Z) <1fp>y (1—p)™

If n; = 1, then y; is a 0/1 binary data point (follows a Bernoulli distribu-
tion).

1.1 Data input

If X, are categorical variables, then we may have samples with the same
X; and we can group them together.

e ungrouped data: each n; = 1 and some samples have the same X;,
thus they share the same p;

e a grouped sample 7, for group k contains mj, ungrouped samples
whose X; are the same we only have group level covariates). As
pi =g HX ZT B), samples within the same group share the same mean.
Let I, = {i : ¢ in group k} be the set of individual binary samples
and let ny = |Ix|. Then the response for the group samples is:

Tp = Z y; ~ Binomial(nyg, pr)
i€l

e The grouped data follows the Binomial distribution because we as-
sume that the samples are independent within each group.

e If there are some unmeasured group-level covariates that affect all
samples in the group, it can bring in extra dependency and an inflated
variance of §;. (we will discuss this issue later in detail in Chapter 8
and 9.)
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e Let N =), n; The likelihood for the ungrouped data is:
Fyiya,-un) = [l (1 —p)' v
i
_ Uk ng—Yk
=TI I »%(1—p)
k i€ly
The likelihood for the corresponding grouped data is:
_ - n i 5
f(ylay27 o J/K) = H <y:> H pzk(l _pk)nk Yk
k icly

The likelihood is not the same between the grouped data and un-
grouped data. However, the log-likelihood function only differs by a
constant, thus the GLM solution does not change.

1.2 Link function

The expectation of each sample is E(y;) = n;p; where n; is a known con-
stant. Thus we define the link function as a function of p;

9(pi) = X8

Equivalently,
pi=g (X[ B)€[0,1]

If g is a one-to-one mapping (otherwise there can be identifiability issues)
and continuous function, then ¢g~' should be monotone. In that case, one

natural choice of g~! is to make it as a cdf of some distribution. We then
can denote F(z) = g~1(2) as some cdf function. Let ¢; > F()

pi=FX'B)=P(e; < XB) =P (X[ B—¢ >=0)

If y; is binary, this indicates that y; follows the distribution

Y, — 1 ifXZ-Tﬂ—ei>:0
0 else

This is also called a latent variable threshold model.

Popular latent variable threshold models:
e The probit link: F(z) is the cdf of a standard Gaussian distribution
pi=P(X/B—e>=0)=P(X/B+e >=0)

where €; ~ N(0,1). Let the hidden variable be y* = XT3 + ¢;, then
it goes to the definition of the probit link that some of you may be
more familiar with:

1 ifyr >=
Y, = ify: >=0
0 else

e The logit link: F'(z) is the cdf of a standard logistic distribution
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— The link function is called the logit link: g¢(p;) = logit(p;) =

log (ﬁ’p)

— The logit link is the canonical link of the Binomial distribution

e The identity link: F(z) is the cdf of a uniform [0, 1] distribution and
pi=X{p

— The identity link corresponds to a uniform cdf only when X 3 €
[0,1] for all samples.

— Because of the range issue, when using R to solve a binomial
GLM with identity link, there can often be numerical problems
(such as the error we saw in the earlier data example in Section
1.4, Data Example 1).

e The log-log link: F(z) is the cdf of a standard double-exponential
distribution (Gumbel distribution)

F(z) =e"¢
— The link function is called the log-log link:
9(pi) = —log[~log(p;)] = X B

— Both the probit and logit link assumes a symmetric ¢; (around 0).
So we implicitly assumed that the response curve is symmetric
at 0.5

9(pi) = —g(1 —ps)
One can use the log-log link if such assumption is severely vi-
olated (or use a complementary log-log link depending on the
shape of the response curve). Read Chapter 5.6.3 for more de-
tails (also discussed how one may choose an appropriate link
function in practice).

2 Some applications of a Binary GLM

2.1 2 x 2 table

When Both the X; and y; are binary, the grouped data can be represented
by a 2 x 2 table.

e Number of grouped samples: 2.

e Number of total ungrouped observations: N = n; + ny (Table 5.2 of
the Agresti book)

e Assume that (X;,y;) are i.i.d. Odds ratio (OR) for the response
variable Y:

PY=1|X=1)/PY =0|X=1)

OR:]P’(Y:HX:O)/IP’(Y:O\X:O)

e Interpretation of the coeflicient ; in the binary GLM with logit link:

logit(p;) = Bo + B1.X;
e = OR
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2.2 Case-control study

We want to know

effect?

Risk factor X —=  Outcome Y

X, = 1/0 if the person is a smoker/non-smoker and y; = 1/0 if the person
develops cancer/is a healthy control.

e Prospective design: randomly select smokers and non-smokers from
the population and observe whether they will develop cancer in the
future.

— We can compare E(Y =1 | X =1) with E(Y =1 | X =0)
— Drawbacks: the study takes a long time; lung cancer is a rare

disease, may observe very few cancer samples.

e Case-control study (retrospective): We randomly select some samples
from patients who develop cancer and some samples from healthy
controls. Then, we check whether the person has been a smoker or
not.

— We can now only compare E(X =1|Y = 1) with E(X =1 |
Y =0)

— The study takes a shorter time, and we can obtain enough cancer
cases.

Why is the case-control study popular?

OR*IP’(Y:HX:U/P(Y:MX:D
ST PY=1|X=0)/PY=0]|X=0)
CPX=1|Y=1)/PX=0]Y=1)
CP(X=1]Y=0)/P(X=0|Y =0)

Thus, we can study estimate the odds ratio of the risk factor from case-
control studies.

Thus, building the logistic regression using case-control study samples is
the same as building the model using prospective samples:

e =0R |5_,

2.3 Classification

Binary GLM models can be used for classification.

Some concepts in evaluating the classification result

e A classification table (Table 5.1 of the Agresti book): y v.s. §
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Sensitivity (recall, true positive rate, tpr): P(=1|y=1)

Specificity: P(§ =0y =0)

False positive rate (fpr): 1 — specificity = P(§ =1 |y =0)

e ROC curve (Figure 5.2 of the Agresti book): fpr v.s. sensitivity

Next time: Chapter 5.3 - 5.5, 5.7, binary GLM: inference, model fitting and
examples



