STAT347: Generalized Linear Models Lecture 6

Today's topics: Chapters 5.3 - 5.5, 5.7

- Binary GLM inference
- Fitting logistic regression and the infinite estimates
- Binary GLM example

1 Binary GLM model inference

We have already learnt the inference of a general GLM model, we now look what the specific forms are for a binary GLM.

1.1 Score equation in logistic regression

For logistic regression, as the logit link is the canonical link, the score equation is:

$$\frac{\partial L}{\partial \beta_j} = \sum_i (y_i - n_i p_i) x_{ij} = \sum_i \left(y_i - \frac{n_i e^{X_i^T \beta}}{1 + e^{X_i^T \beta}} \right) x_{ij} = 0$$

We have derived that as $n \to \infty$

$$\operatorname{Var}(\hat{\beta}) \to (X^T W X)^{-1}$$

where $W = D^2 V^{-1}$ is a diagonal matrix. For logistic regression where the logit link is the canonical link, we have W = V so

$$W_{ii} = n_i p_i (1 - p_i), \quad \widehat{W}_{ii} = n_i \frac{e^{X_i^T \hat{\beta}}}{(1 + e^{X_i^T \hat{\beta}})^2}$$

1.2 Hypothesis testing

Consider the simple null model for binomial data we discussed earlier. Under the null model, the group data is $\sum_i y_i \sim \text{Binomial}(N, p)$ which has only one sample. We want to test for $H_0: \beta = \text{logit}(p_0)$ (or equivalently: $H_0: p \equiv p_0$) where β is the constant coefficient. Define $y = \sum_i y_i/N$, under the null model, we can quickly find the MLE, which is $\hat{p} = y$ and $\hat{\beta} = \text{logit}(y)$.

The test statistics are

Wald test:

$$\left(\frac{\hat{\beta} - \operatorname{logit}(p_0)}{\widehat{\operatorname{SE}}(\hat{\beta})}\right)^2 = [\operatorname{logit}(y) - \operatorname{logit}(p_0)]^2 N y (1 - y),$$

Or

$$\left(\frac{\hat{p} - p_0}{\widehat{SE}(\hat{p})}\right)^2 = \frac{(y - p_0)^2}{[y(1 - y)/N]}$$

Likelihood ratio test:

$$-2(L_0 - L_1) = -2\log\left[\frac{p_0^{Ny}(1 - p_0)^{N - Ny}}{y^{Ny}(1 - y)^{N - Ny}}\right]$$

Score test:

$$T = \frac{\dot{L}(\beta_0)^T \dot{L}(\beta_0)}{-\ddot{L}(\beta_0)} = \frac{(y-p_0)^2}{[p_0(1-p_0)/N]}$$

- Wald test depends on the scale
- Wald test is less stable when y is close to 0 or 1. Read Chapter 5.3.3

1.3 Deviance

The total (residual) deviance for a binary GLM (the deviance between the saturated model and the fitted model) is

$$\begin{aligned} D_{+}(y,\hat{\mu}) &= \sum_{i} D(y_{i},n_{i}\hat{p}_{i}) \\ &= -2\sum_{i} \log\left[f(y_{i},\hat{\theta}_{i})/f(y_{i},\theta_{y_{i}})\right] \\ &= -2\sum_{i} \log\left[\frac{\hat{p}_{i}^{y_{i}}(1-\hat{p}_{i})^{n_{i}-y_{i}}}{(y_{i}/n_{i})^{y_{i}}(1-y_{i}/n_{i})^{n_{i}-y_{i}}}\right] \\ &= 2\sum_{i} y_{i} \log\frac{y_{i}}{n_{i}\hat{p}_{i}} + 2\sum_{i} (n_{i}-y_{i}) \log\frac{n_{i}-y_{i}}{n_{i}-n_{i}\hat{p}_{i}} \end{aligned}$$

- The total deviance is different for grouped data and ungrouped data as the saturated model is different.
 - Ungrouped data: the saturated model is $\hat{p}_i = y_i$ for each individual sample
 - grouped data: the saturated model is $\hat{p}_k = \tilde{y}_k$ for each group k. Thus all samples in the same group should have the same \hat{p}_i even in the saturated model.

1.4 Goodness-of-fit test

The group level data can be presented by a $K \times 2$ count table, where each row is a group, and the two columns store the number of success \tilde{y}_k and the number of failure $n_k - \tilde{y}_k$ respectively in each cell.

• Residual deviance for the grouped data:

$$G^2 = D_+(y,\hat{\mu}) = 2\sum_{2K \text{ cells}} \text{observed} \times \log\left(\frac{\text{observed}}{\text{expected}}\right)$$

• When the number of groups K is fixed while the total samples size $N = \sum_k n_k$ is large, then the residual deviance is the likelihood ratio satisfying

$$G^2 = D_+(y,\hat{\mu}) \xrightarrow{p} \chi^2_{K-p}$$

which can be used for goodness-of-fit test of the fitted model.

• Pearson's statistics for goodness of fit:

$$\begin{aligned} X^2 &= \sum_{2K \text{ cells}} \frac{(\text{observed } - \text{ fitted})^2}{\text{fitted}} \\ &= \sum_k \frac{(n_k \tilde{y}_k - n_k \hat{p}_k)^2}{n_k \hat{p}_k} + \sum_k \frac{[(n_k - \tilde{y}_k) - (n_k - n_k \hat{p}_k)]^2}{n_k - n_k \hat{p}_k} \\ &= \sum_k \frac{(\tilde{y}_k - n_k \hat{p}_k)^2}{n_k \hat{p}_k (1 - \hat{p}_k)} \xrightarrow{p} \chi^2_{K-p} \end{aligned}$$

- Comparison between G^2 and X^2
 - $-X^2 = \sum_k e_k^2$: sum square of Pearson residuals of group data. X^2 converges to χ^2_{K-p} more quickly, so it works better than G^2 for N not to large.
 - $-G^2 = \sum_k d_k^2$: sum square of deviance residuals of group data. G^2 gives more reliable p-values than X^2 when some cells have small expected counts (≤ 5).

2 Binary GLM computation

For logistic regression, Newton's method = Fisher scoring = IRLS. For IRLS, the tth iteration is

$$X^{T}W^{(t)}(z^{(t)} - X\beta) = 0$$

where

$$z_i^{(t)} = X_i^T \beta^{(t)} + \left(D_{ii}^{(t)}\right)^{-1} (y_i - \mu_i^{(t)})$$
$$= \log\left(\frac{p_i^{(t)}}{1 - p_i^{(t)}}\right) + \frac{y_i - n_i p_i^{(t)}}{n_i p_i^{(t)} (1 - p_i^{(t)})}$$

and

$$W_{ii}^{(t)} = V_{ii}^{(t)} = n_i p_i^{(t)} (1 - p_i^{(t)})$$

2.1 Infinite parameter estimates

One may sometimes see this warning message using R to solve the logistic regression:

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred You may see very large estimates of β . What happened?

- Perfect separation:
 - There exists β_s such that if $X_i^T \beta_s > 0$ then $y_i = 1$ otherwise $y_i = 0$.

We proof that the MLE for β does not exist. Let $\eta_i = k X_i^T \beta_s$. When $k \to \infty$, then

$$p_i = \frac{e^{kX_i^T\beta_s}}{1 + e^{kX_i^T\beta_s}} \to \begin{cases} 1 & \text{if } X_i^T\beta_s > 0, \text{ or equivalently } y_i = 1\\ 0 & \text{else} \end{cases}$$

Thus, $\frac{\partial L}{\partial \beta} \to 0$ if $k \to \infty$ so the solution of the score equation is infinite. In other words, the MLE does not exist.

• Quasi-complete separation:

There exists β_s such that if $X_i^T \beta_s > 0$ then $y_i = 1$, if $X_i^T \beta_s < 0$ then $y_i = 0$, and if $X_i^T \beta_s = 0$ then $y_i = 0$ or 1 (allow data points on the separation hyperplane with both outcomes).

We can also show that the MLE for β does not exist (Albert and Anderson, *Biometrika* 1984). Any value β can be decomposed as $\beta = \beta_s + \gamma$. Denote $\beta_k = k\beta_s + \gamma$ Let $\eta_i = kX_i^T\beta_s + X_i^T\gamma$. When $k \to \infty$, then

$$p_i = \frac{e^{kX_i^T\beta_s + X_i^T\gamma}}{1 + e^{kX_i^T\beta_s + X_i^T\gamma}} \to \begin{cases} 1 & \text{if } X_i^T\beta_s > 0\\ 0 & \text{if } X_i^T\beta_s < 0\\ \frac{e^{X_i^T\gamma}}{1 + e^{X_i^T\gamma}} & \text{if } X_i^T\beta_s = 0 \end{cases}$$

This tells us that for any β , we can find β_k with large enough k so that the log-likelihood $L(\beta_k) > L(\beta)$, so the log-likelihood function $L(\cdot)$ does not have a finite maximum point. In other words, the MLE does not exist.

• How to deal with perfect/quasi-complete separation? (Read Chapter 5.4.2)

We can add a penalization or add a prior of the parameter to obtain finite estimates of β .

3 Two data examples

Chapter 5.7. Please check the R notebook 3.

Next time: Chapter 6.1, multivariate GLM: nominal response