STAT347: Generalized Linear Models
Lecture 6

Today’s topics: Chapters 5.3 - 5.5, 5.7
e Binary GLM inference
e Fitting logistic regression and the infinite estimates

e Binary GLM example

1 Binary GLM model inference

We have already learnt the inference of a general GLM model, we now look
what the specific forms are for a binary GLM.

1.1 Score equation in logistic regression

For logistic regression, as the logit link is the canonical link, the score
equation is:
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where W = D?V ! is a diagonal matrix. For logistic regression where the
logit link is the canonical link, we have W =V so
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1.2 Hypothesis testing

Consider the simple null model for binomial data we discussed earlier. Un-
der the null model, the group data is ), y; ~ Binomial(/V,p) which has
only one sample. We want to test for Hy : § = logit(pg) (or equivalently:
Hy : p = po) where 8 is the constant coefficient. Define y = >, v;/N,
under the null model, we can quickly find the MLE, which is p = y and
B = logit(y).

The test statistics are

Wald test:
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Likelihood ratio test:
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Score test:
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e Wald test depends on the scale

e Wald test is less stable when y is close to 0 or 1. Read Chapter 5.3.3

1.3 Deviance

The total (residual) deviance for a binary GLM (the deviance between the
saturated model and the fitted model) is
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e The total deviance is different for grouped data and ungrouped data
as the saturated model is different.
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— Ungrouped data: the saturated model is p; = y; for each indi-
vidual sample

— grouped data: the saturated model is pr = yx for each group
k. Thus all samples in the same group should have the same p;
even in the saturated model.

1.4 Goodness-of-fit test

The group level data can be presented by a K X 2 count table, where each
row is a group, and the two columns store the number of success g and
the number of failure ny — 7, respectively in each cell.

e Residual deviance for the grouped data:

observed
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e When the number of groups K is fixed while the total samples size
N =3, ny is large, then the residual deviance is the likelihood ratio
satisfying

G2 = DJr(ya/l) £> Xi(fp
which can be used for goodness-of-fit test of the fitted model.

e Pearson’s statistics for goodness of fit:
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e Comparison between G2 and X2

— X? = 3", ef: sum square of Pearson residuals of group data.
X? converges to X%{—p more quickly, so it works better than G?
for N not to large.

— G? = Y, di: sum square of deviance residuals of group data.
G? gives more reliable p-values than X2 when some cells have
small expected counts (< 5).

2 Binary GLM computation

For logistic regression, Newton’s method = Fisher scoring = IRLS.
For IRLS, the tth iteration is
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2.1 Infinite parameter estimates

One may sometimes see this warning message using R to solve the logistic
regression:

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred

You may see very large estimates of 5. What happened?

e Perfect separation:

There exists 3 such that if XZ-T,BS > 0 then y; = 1 otherwise y; = 0.
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We proof that the MLE for 3 does not exist. Let n; = kX[ Ss.
When k — oo, then

Dbi

kX Bs 1 if X8, >0, or equivalently y; = 1
0 else

T 1 hXTB. -

Thus, g—é — 0 if k& — oo so the solution of the score equation is

infinite. In other words, the MLE does not exist.

e Quasi-complete separation:

There exists 5 such that if XI 8 > 0 then y; = 1, if X785 < 0 then
y; = 0, and if XiTBS = 0 then y; = 0 or 1 (allow data points on the
separation hyperplane with both outcomes).

We can also show that the MLE for 5 does not exist (Albert and
Anderson, Biometrika 1984). Any value S can be decomposed as
B = Bs +7. Denote By = kBs + v Let n; = kX! B8, + X}'v. When
k — oo, then

1 if XI'8s>0

_ 0 if XI'8s<0
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This tells us that for any 3, we can find S with large enough k so
that the log-likelihood L(8x) > L(f), so the log-likelihood function
L(-) does not have a finite maximum point. In other words, the MLE
does not exist.

e How to deal with perfect/quasi-complete separation? (Read Chapter
5.4.2)

We can add a penalization or add a prior of the parameter to obtain
finite estimates of 3.

3 Two data examples

Chapter 5.7. Please check the R notebook 3.

Next time: Chapter 6.1, multivariate GLM: nominal response



