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STAT347: Generalized Linear Models

Lecture 6

Today’s topics: Chapters 5.3 - 5.5, 5.7

• Binary GLM inference

• Fitting logistic regression and the infinite estimates

• Binary GLM example

1 Binary GLM model inference

We have already learnt the inference of a general GLM model, we now look
what the specific forms are for a binary GLM.

1.1 Score equation in logistic regression

For logistic regression, as the logit link is the canonical link, the score
equation is:

∂L

∂βj
=
∑
i

(yi − nipi)xij =
∑
i

(
yi −

nie
XTi β

1 + eX
T
i β

)
xij = 0

We have derived that as n→∞

Var(β̂)→ (XTWX)−1

where W = D2V −1 is a diagonal matrix. For logistic regression where the
logit link is the canonical link, we have W = V so

Wii = nipi(1− pi), Ŵii = ni
eX

T
i β̂

(1 + eX
T
i β̂)2

1.2 Hypothesis testing

Consider the simple null model for binomial data we discussed earlier. Un-
der the null model, the group data is

∑
i yi ∼ Binomial(N, p) which has

only one sample. We want to test for H0 : β = logit(p0) (or equivalently:
H0 : p ≡ p0) where β is the constant coefficient. Define y =

∑
i yi/N ,

under the null model, we can quickly find the MLE, which is p̂ = y and
β̂ = logit(y).

The test statistics are

Wald test: (
β̂ − logit(p0)

ŜE(β̂)

)2

= [logit(y)− logit(p0)]2Ny(1− y),
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Or (
p̂− p0
ŜE(p̂)

)2

=
(y − p0)2

[y(1− y)/N ]

Likelihood ratio test:

−2(L0 − L1) = −2 log

[
pNy0 (1− p0)N−Ny

yNy(1− y)N−Ny

]

Score test:

T =
L̇(β0)T L̇(β0)

−L̈(β0)
=

(y − p0)2

[p0(1− p0)/N ]

• Wald test depends on the scale

• Wald test is less stable when y is close to 0 or 1. Read Chapter 5.3.3

1.3 Deviance

The total (residual) deviance for a binary GLM (the deviance between the
saturated model and the fitted model) is

D+(y, µ̂) =
∑
i

D(yi, nip̂i)

= −2
∑
i

log
[
f(yi, θ̂i)/f(yi, θyi)

]
= −2

∑
i

log

[
p̂yii (1− p̂i)ni−yi

(yi/ni)yi(1− yi/ni)ni−yi

]
= 2

∑
i

yi log
yi
nip̂i

+ 2
∑
i

(ni − yi) log
ni − yi
ni − nip̂i

• The total deviance is different for grouped data and ungrouped data
as the saturated model is different.

– Ungrouped data: the saturated model is p̂i = yi for each indi-
vidual sample

– grouped data: the saturated model is p̂k = ỹk for each group
k. Thus all samples in the same group should have the same p̂i
even in the saturated model.

1.4 Goodness-of-fit test

The group level data can be presented by a K × 2 count table, where each
row is a group, and the two columns store the number of success ỹk and
the number of failure nk − ỹk respectively in each cell.

• Residual deviance for the grouped data:

G2 = D+(y, µ̂) = 2
∑

2K cells

observed× log

(
observed

expected

)
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• When the number of groups K is fixed while the total samples size
N =

∑
k nk is large, then the residual deviance is the likelihood ratio

satisfying

G2 = D+(y, µ̂)
p→ χ2

K−p

which can be used for goodness-of-fit test of the fitted model.

• Pearson’s statistics for goodness of fit:

X2 =
∑

2K cells

(observed − fitted)
2

fitted

=
∑
k

(nkỹk − nkp̂k)2

nkp̂k
+
∑
k

[(nk − ỹk)− (nk − nkp̂k)]2

nk − nkp̂k

=
∑
k

(ỹk − nkp̂k)2

nkp̂k(1− p̂k)

p→ χ2
K−p

• Comparison between G2 and X2

– X2 =
∑
k e

2
k: sum square of Pearson residuals of group data.

X2 converges to χ2
K−p more quickly, so it works better than G2

for N not to large.

– G2 =
∑
k d

2
k: sum square of deviance residuals of group data.

G2 gives more reliable p-values than X2 when some cells have
small expected counts (≤ 5).

2 Binary GLM computation

For logistic regression, Newton’s method = Fisher scoring = IRLS.

For IRLS, the tth iteration is

XTW (t)(z(t) −Xβ) = 0

where

z
(t)
i = XT

i β
(t) +

(
D

(t)
ii

)−1

(yi − µ(t)
i )

= log

(
p
(t)
i

1− p(t)i

)
+

yi − nip(t)i
nip

(t)
i (1− p(t)i )

and
W

(t)
ii = V

(t)
ii = nip

(t)
i (1− p(t)i )

2.1 Infinite parameter estimates

One may sometimes see this warning message using R to solve the logistic
regression:

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred

You may see very large estimates of β. What happened?

• Perfect separation:

There exists βs such that if XT
i βs > 0 then yi = 1 otherwise yi = 0.
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We proof that the MLE for β does not exist. Let ηi = kXT
i βs.

When k →∞, then

pi =
ekX

T
i βs

1 + ekX
T
i βs
→

{
1 if XT

i βs > 0, or equivalently yi = 1

0 else

Thus, ∂L
∂β → 0 if k → ∞ so the solution of the score equation is

infinite. In other words, the MLE does not exist.

• Quasi-complete separation:

There exists βs such that if XT
i βs > 0 then yi = 1, if XT

i βs < 0 then
yi = 0, and if XT

i βs = 0 then yi = 0 or 1 (allow data points on the
separation hyperplane with both outcomes).

We can also show that the MLE for β does not exist (Albert and
Anderson, Biometrika 1984). Any value β can be decomposed as
β = βs + γ. Denote βk = kβs + γ Let ηi = kXT

i βs + XT
i γ. When

k →∞, then

pi =
ekX

T
i βs+X

T
i γ

1 + ekX
T
i βs+X

T
i γ
→


1 if XT

i βs > 0

0 if XT
i βs < 0

eX
T
i γ

1+eX
T
i
γ

if XT
i βs = 0

This tells us that for any β, we can find βk with large enough k so
that the log-likelihood L(βk) > L(β), so the log-likelihood function
L(·) does not have a finite maximum point. In other words, the MLE
does not exist.

• How to deal with perfect/quasi-complete separation? (Read Chapter
5.4.2)

We can add a penalization or add a prior of the parameter to obtain
finite estimates of β.

3 Two data examples

Chapter 5.7. Please check the R notebook 3.

Next time: Chapter 6.1, multivariate GLM: nominal response


