STAT347: Generalized Linear Models
Lecture 7

Today’s topics: Chapter 6.1
e Nominal response: baseline-category logit model

— Model setup
— Multivariate GLM
— Model fitting

Multinomial response variables:

e Nominal response: ¢ categories without orders. For instance the re-
sponse can be the answer to: which major does an undergraduate
student choose?

e Ordinal response: categories with orders: not satisfied, satisfied, very
satisfied

How to model their relationship with the covariates?

Nominal responses: Baseline-Category logit model

For the nominal response variable, a natural choice of the distribution is
the multinomial distribution. Specifically, we assume that for each sample,
the multinomial response variable is

vi = (Yi1, Yi2, -+ Yic) ~ Multinomial (n;, p; = (pi1, Pi2, -, Dic))

where c is the total number of choices. y;; = 1 for sample ¢ choose level j
and y,;;» = 0 for all 5’ # j.

Treat the multinomial response variable as multiple responses and build a
model for each of these responses.

1 Why using the logit link?

We can build a Binary GLM model for each pair of categories.

Select a baseline category (say category ¢), then we can build a binary GLM
for each of 1,2,--- ;¢ — 1 categories compared with category c. Basically,
we assume Din
i T
Dik + Dic (X )
However, not every F' is good to use. When we think that these categories
are “exchangeable”, since the choice of baseline category c is arbitrary, a
desired property is that the model does not depend on which category you
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choose as the baseline. Specifically, it means that if we switch to a baseline
category ¢, for any k' # ¢/, from (1) we can find some S
Dik’ T
P P B
Dik' + Dic' (X )
e If F' corresponds to the logit link, then we have
Pik _ XTBr
Dic
This is called the baseline-category logit model.
— for k # ¢, B = B — Bor
Pik _  xT(Br—B.1)
Dic
— for k= c, Bc = _50’ (ﬁc - 0)
e If there is a natural baseline category in some applications (categories
not “exchangeable”), other links can still be used.
Under the baseline-category logit model, we have
eX,iTﬁk
Dik = o1 xT4
R R STl

2 Multivariate GLM

Treating each pair is a seperate logistic regression, we can get the asymp-
totic distribution of each [j.

e The Bk for k =1,2,--- ¢ categories are not independent (as y;, are
not)

e The Bk may not be efficient ignoring other categories

e How to calculate the distribution of some function h(Bl, e ch—l)
if needed? (For example, we may want to know the distribution of

Pi1 — Pi2)

We can generalize the univariate GLM to a multivariate GLM where y; =
(Yi1, Yizs - -+ 5 Yi,c—1) Tollows a multivariate exponential dispersion family dis-

tribution
vl 0;—b(8;)

flyis0:) =e =@ fo(yi; 0)
where 6; = (031, ,0;c).

We drop yic as yic = n; — Zk# Yik

The mean vector is p; = (fi1, - -+ 5 fhije—1) = (MiPi1, -+ s NiDie—1)

e The link function is g(u;) = X;08 where

Bi xr o .- 0

Bo o X' -~ 0
ﬂ: : 3 4hg = :

Be 0 0 XiT

The form of the link function is gy (p;) = log [pir/(ni — > fik’)]
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3 Fitting baseline-category logit model

Consider the ungrouped data format and let N = )", ng.
The joint log-likelihood for the multivariate GLM is

L(B;y) = log lH (H py““)]
1
{ Yik log Pk 4 Ingic}
1 _ Dic
— c—1
{ yin X[ B — log (1 + ZeXiTﬁ”) }
k=1 h=1
_ p N c—1
Zﬂkj <Z yzkx”> — Z {log (1 + Z eXiTﬁh> }
—1 | j=1 i=1 h—1

N N T N
OL eXi ﬂkx”

o YikTij — ——— T T Yik — Pik)Ti; = 0
36kj ; kLig ;1_’_2}17 XTﬁh Z( k— k) J
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The score equations are

which have the same forms as we saw before for canonical link.

For computation, we can find that Fisher-scoring is the same as Newton’s
method (details omitted, see Chapter 6.1.3).



