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STAT347: Generalized Linear Models

Lecture 7

Today’s topics: Chapter 6.1

• Nominal response: baseline-category logit model

– Model setup

– Multivariate GLM

– Model fitting

Multinomial response variables:

• Nominal response: c categories without orders. For instance the re-
sponse can be the answer to: which major does an undergraduate
student choose?

• Ordinal response: categories with orders: not satisfied, satisfied, very
satisfied

How to model their relationship with the covariates?

Nominal responses: Baseline-Category logit model

For the nominal response variable, a natural choice of the distribution is
the multinomial distribution. Specifically, we assume that for each sample,
the multinomial response variable is

yi = (yi1, yi2, · · · , yic) ∼ Multinomial (ni, pi = (pi1, pi2, · · · , pic))

where c is the total number of choices. yij = 1 for sample i choose level j
and yij′ = 0 for all j′ 6= j.

Treat the multinomial response variable as multiple responses and build a
model for each of these responses.

1 Why using the logit link?

We can build a Binary GLM model for each pair of categories.

Select a baseline category (say category c), then we can build a binary GLM
for each of 1, 2, · · · , c − 1 categories compared with category c. Basically,
we assume

pik
pik + pic

= F (XT
i βk)

However, not every F is good to use. When we think that these categories
are “exchangeable”, since the choice of baseline category c is arbitrary, a
desired property is that the model does not depend on which category you
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choose as the baseline. Specifically, it means that if we switch to a baseline
category c′, for any k′ 6= c′, from (1) we can find some β̃k′

pik′

pik′ + pic′
= F (XT

i β̃k′)

• If F corresponds to the logit link, then we have

pik
pic

= eX
T
i βk

This is called the baseline-category logit model.

– for k 6= c, β̃k = βk − βc′ .
pik
pic′

= eX
T
i (βk−βc′ )

– for k = c, β̃c = −βc′ (βc = 0)

• If there is a natural baseline category in some applications (categories
not “exchangeable”), other links can still be used.

Under the baseline-category logit model, we have

pik =
eX

T
i βk

1 +
∑c−1
h=1 e

XTi βh

2 Multivariate GLM

Treating each pair is a seperate logistic regression, we can get the asymp-
totic distribution of each β̂k.

• The β̂k for k = 1, 2, · · · , c categories are not independent (as yik are
not)

• The β̂k may not be efficient ignoring other categories

• How to calculate the distribution of some function h(β̂1, · · · , β̂c−1)
if needed? (For example, we may want to know the distribution of
p̂i1 − p̂i2)

We can generalize the univariate GLM to a multivariate GLM where yi =
(yi1, yi2, · · · , yi,c−1) follows a multivariate exponential dispersion family dis-
tribution

f(yi; θi) = e
yTi θi−b(θi)

a(φ) f0(yi;φ)

where θi = (θi1, · · · , θic).

• We drop yic as yic = ni −
∑
k 6=c yik

• The mean vector is µi = (µi1, · · · , µi,c−1) = (nipi1, · · · , nipi,c−1)

• The link function is g(µi) = Xiβ where

β =


β1
β2
...
βc

 ,Xi =


XT
i 0 · · · 0

0 XT
i · · · 0

...
0 0 · · · XT

i


• The form of the link function is gk(µi) = log [µik/(ni −

∑
k′ µik′)]
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3 Fitting baseline-category logit model

Consider the ungrouped data format and let N =
∑
i′ ni′ .

The joint log-likelihood for the multivariate GLM is

L(β; y) = log

[
N∏
i=1

(
c∏

k=1

pyikik

)]

=

N∑
i=1

{
c−1∑
k=1

yik log
pik
pic

+ log pic

}

=

N∑
i=1

{
c−1∑
k=1

yikX
T
i βk − log

(
1 +

c−1∑
h=1

eX
T
i βh

)}

=

c−1∑
k=1


p∑
j=1

βkj

(
N∑
i=1

yikxij

)−
N∑
i=1

{
log

(
1 +

c−1∑
h=1

eX
T
i βh

)}

The score equations are

∂L

∂βkj
=

N∑
i=1

yikxij −
N∑
i=1

eX
T
i βkxij

1 +
∑c−1
h=1 e

XTi βh
=

N∑
i=1

(yik − pik)xij = 0

which have the same forms as we saw before for canonical link.

For computation, we can find that Fisher-scoring is the same as Newton’s
method (details omitted, see Chapter 6.1.3).


