STAT347: Generalized Linear Models
Lecture 8

Today’s topics: Chapter 6.2-6.3
e Ordinal response models

e Examples of multinomial GLM

1 Ordinal response

Say the response (disease status of the sample) is one of these 4 categories:
healthy, mild, moderate, severe. How do we build a model to predict the
response / understand the covariates’ effect?

e The categories have an order
e One naive solution: ignore the categorical nature of y

— Encode y; = 1,2,3,4 as a score for healthy, mild, moderate,
severe. Build a linear regression model

vi=X'B+e

— Usually no clear-cut choice for the scores: age groups 0-18, 18-34,
34-55 and 55+

— A more detailed comparison between this OLS and the model
will be introduced later

1.1 Cumulative logit/probit models: latent variable
motivation

Denote y; = k if the response is in the kth ordered category. Assume that
there is a continuous latent variable for each sample y; that satisfy

yf:XiTﬁ‘*‘Q

where ¢; are i.i.d. with the cdf function F'(-). Suppose that there are some

cutpoints
—x=0q<a; <...<a. =

such that we observe
yi=k ifop_1 <y <oy
Then, we have
Plys < k) = P(y; < ay) = Pl — X7 B)

When we take F as the cdf of standard logistic/Gaussian distribution, we
get the cumulative logit/probit models.
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e For identifiability, X; here does not include the intercept term.

This is because that with the unknown intercept term, the data has
no information to tell the value of the unknown [y (we can simulta-
neously increase By and «o, - -, a. by any same constant).

e We assume constant 8 across categories

Another equivalent way to define the cumulative logit model

Pa+ o+ Pk

Dik+1+ -+ Dic ‘

logit[P(y; < k)] = log

where 8 = —8.
Proportional odds:

logit[P(y; < k|X; = u)] — logit[P(y; < k|X; = v)]
Plys < kIXi = u)/P(yi > k| X = u)

Py < k| Xi = 0)/P(y; > k| X; = v)
=(u—v)"p

=log

So this odds between two samples keeps the same for all k.

e Settings are stochastically ordered. If X7 B> X7 B then we have
P(y; < k) > P(yy < k) for ALL k.

1.2 Fitting cumulative link models

We assume that P(y; < k) = F(a; + X' 3), then the likelihood for un-
grouped data is

N /¢ N o .
H( pi!ék):H{H[P(yzSk’)—P(ysz_l)]ym}
k=1

i=1 (k=1

The log-likelihood is

N ¢
L(a, ) => Y yirlog[Fox + X['B) = Fax—1 + X[ B)]

i=1 k=1

and the score equation for Bj is

OL e ot XTB) — flowa + XT5)

85] i=1 k=1 R F(oy + XZTB) — F(ag_1+ XZTB)
for ay, is
oL _ i yirf (o + XT'B) B yiws1 f (o + XTB) 0
Oa = | Flon + X7B) — Flar—1+X]'B)  Flags1 + XTB) — Floy + X[ B)

The computation is complicated, but we can still use Fisher-scoring/Newton’s

method to solve it and we can still calculate the asymptotic variances of ¢
and each d&y.
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1.3 Comparison with OLS

Limitation of the cumulative link models:

e Settings are stochastically ordered. If X7 B> X7 B then we have
P(y; < k) > P(yy < k) for ALL k.

e When ¢ = 4, the model can not allow the probability of each ordered
category to be (0.3,0.2,0.2,0.3) for one sample and (0.1,0.4,0.4,0.1)
for the other sample.

e Read Chapter 6.2.4 for how to build more flexible models under this
scenario

Disadvantages of modeling ordered categories using a linear model:

e Usually no clear cut for the numerical scores

e Linear model does not allow for the measurement error in discretiza-
tion

e From the linear model you can not get estimated probabilities of each
category for a particular sample

e Linear model ignores that the variability in each category can be
different

(Read Chapter 6.2.5)

A simulation example (Figure 6.3)

y; =2+ 0.6x; —4z; + ¢
where 2; “&" Uniform|0, 100], z; “r Bernoulli(0.5) and ¢; b N(0,1).
Set a1 =2, ap =4, ag =6 and oy = 8.
Check details in the R notebook 4.

2 Nominal and ordinal response data exam-
ples

Chapter 6.3.2 and Chapter 6.3.3. Please check the R notebook 4.

Next time: Chapters 7.1 and 7.2



