STAT347: Generalized Linear Models Lecture 9

Today's topics: Chapters 7.1 and 7.2

- Poisson loglinear model
- Poisson modeling for contingency tables

In many applications, the response variables are counts. Some examples include:

- Our example in Lecture 1: the number of male satellite for female horseshoe crabs
- Number of views for a Youtube video
- Number of mRNA copies measured for each gene in RNA sequencing experiments

Why not using a linear model?

- The response Y typically have a wide range
- Unequal variances

1 Poisson loglinear model

Poisson distribution density function is

$$f(y) = e^{-\mu} \mu^y / y! = e^{y \log \mu - \mu} / y!$$

Loglinear model: use the canonical link

$$\log \mu_i = X_i^T \beta$$

Or equivalently, $\mu_i = (e^{\beta_1})^{x_{i1}} \cdots (e^{\beta_p})^{x_{ip}}$, assuming that each x_{ij} has a multiplicative effect on y_i .

- Estimated variance of $\hat{\beta}$: $\widehat{\text{var}}(\hat{\beta}) = (X^T \hat{W} X)^{-1}$. Each diagonal element $w_{ii} = v_{ii} = \text{var}(y_i) = \mu_i$
- Residual deviance:

$$D_{+}(y,\hat{\mu}) = 2\sum_{i=1}^{n} \left[y_i \log\left(\frac{y_i}{\hat{\mu}_i}\right) - y_i + \hat{\mu}_i \right]$$

• Offset: forcing the coefficient of a variable to be 1.

Example: modeling rates, y_i crime counts and t_i the total population within each county, and we assume

$$\log(\mu_i/t_i) = X_i^T \beta$$

or equivalently $\log(\mu_i) = \log(t_i) + X_i^T \beta$. the adjustment term $\log(t_i)$ is called an offset as we do not need to estimate its coefficient.

Quality	No Particles	Particles	Total
Good	320	14	334
Bad	80	36	116
Total	400	50	450

Table 1: 2×2 table. A sample of wafers was drawn and cross-classified according to whether a particle was found on the die that produced the wafer and whether the wafer was good or bad.

2 Poisson modeling for contingency tables

2.1 An example two-by-two table

This is from the Faraway book Chapter 6.1.

See Table 1 and we are interested in understanding the relationship between the wafer quality and the particles on the dies.

- 1. The data is obtained by randomly sample 400 wafers without particles and 50 with particles. This leads to a Binomial model where the grouped-level data has 2 samples: $X_i = 0, 1, Y_i = 320, 14$ and $n_i = 400, 50$.
- 2. The data is obtained from observations during a fixed period of time and we happen to observe 450 total observations. This leads to a Poisson model where the data has 4 samples: $X_i = 00, 01, 10, 11$ and $Y_i = 320, 80, 14, 36$.
- 3. We randomly sample 450 wafers (by design) and cross-classify them. This leads to a multinomial model where the grouped level data only has one sample $y = (320, 80, 14, 36) \sim \text{Multinomial}(450, p)$.

Equivalence between the Poisson distribution and Multinomial distribution: For independent Poisson counts (y_1, \dots, y_c) , the total $n = \sum_i y_i$ follows a Poisson distribution with mean $\sum_i \mu_i$. Conditional on the total n, the conditional joint distribution is

$$\frac{P(y_1 = n_1, \cdots, y_c = n_c)}{P(\sum_i y_i = n)} = \left(\frac{n!}{\prod_i n_i!}\right) \prod_{i=1}^c p_i^{n_i}$$

and it follows a multinomial distribution.

• This indicates that we can view the data equivalently as there are *n* i.i.d. samples and each sample follows a multinomial distribution to choose one of the cells.

2.2 Two-way contingency table

Consider an $r \times c$ table for two categorical variables (denote as A and B). The Poisson GLM assumes that the count y_{ij} in each cell independently follows a Poisson distributions with mean μ_{ij} . Consider two scenarios:

2.2.1 Two categorical variables are independent

If we assume that the two categorical variables are independent, then we can assume

$$\mu_{ij} = \mu \phi_i \psi_j$$

with $\sum_{i} \phi_{i} = \sum_{j} \psi_{j} = 1$. Equivalently, we can assume that

$$\log \mu_{ij} = \beta_0 + \beta_i^A + \beta_j^B$$

(We may assume a different identification condition $\sum_i \beta_i^A = \sum_j \beta_j^B = 0$). This model has a [1 + (r - 1) + (c - 1)] free parameters (degree of freedom). The non-constant part of the log-likelihood is

$$L(\mu) = \sum_{i=1}^{r} \sum_{j=1}^{c} y_{ij} \log \mu_{ij} - \sum_{i=1}^{r} \sum_{j=1}^{c} \mu_{ij}$$

The we used the canonical link, the score equations should be

$$\sum_{i,j} (y_{ij} - \mu_{ij}) = 0$$
$$\sum_{j} (y_{ij} - \mu_{ij}) = 0, \quad i = 1, 2, \cdots, r$$
$$\sum_{i} (y_{ij} - \mu_{ij}) = 0, \quad j = 1, 2, \cdots, c$$

Thus we get the MLE: $\hat{\mu} = y_{++}$, $\hat{\phi}_i = y_{i+}/y_{++}$ and $\hat{\psi}_j = y_{+j}/y_{++}$. We can also write down the likelihood conditional on n, and we get the

we can also write down the intermode conditional on n, and we get same MLE (Chapter 7.2.2).

2.2.2 Two categorical variables has an interaction

We can assume

$$\log \mu_{ij} = \beta_0 + \beta_i^A + \beta_j^B + \gamma_{ij}^{AB}$$

- We need identifiability conditions such as $\gamma^{AB}_{1j} = \gamma^{AB}_{i1} = 0$ for identifiability.
- In total adds $(r-1) \times (c-1)$ more parameters
- This model is saturated
- The interactions can be interpreted as odds ratios. For instance, r=c=2

$$\log \frac{p_{11}/p_{12}}{p_{21}/p_{22}} = \log \frac{\mu_{11}/\mu_{12}}{\mu_{21}/\mu_{22}} = \gamma_{11}^{AB} + \gamma_{22}^{AB} - \gamma_{12}^{AB} - \gamma_{21}^{AB}$$

Under our previous identification condition, the odds ratio is $e^{\gamma_{22}^{AB}}$.

2.3 Three-way contingency table

Consider an $r \times c \times l$ table. Assume that for an individual sample

• Mutual independence

$$P(A = i, B = j, C = k) = P(A = i)P(B = j)P(C = k)$$

Equivalently, the loglinear form is

$$\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C$$

• Joint independence

$$P(A = i, B = j, C = k) = P(A = i)P(B = j, C = k)$$

Equivalently, the loglinear form is

$$\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C + \gamma_{jk}^{BC}$$

• Conditional independence

$$P(A = i, B = j \mid C = k) = P(A = i \mid C = k)P(B = j \mid C = k)$$

Equivalently, the loglinear form is

$$\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C + \gamma_{ik}^{AC} + \gamma_{jk}^{BC}$$

• Homogeneous association

$$\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C + \gamma_{ik}^{AC} + \gamma_{jk}^{BC} + \gamma_{ij}^{AB}$$

An interpretation of this model is that any two pairs are dependent, but the dependence does not change with the value of the third variable.

• The saturated model allowing any dependence structure

$$\log \mu_{ijk} = \beta_0 + \beta_i^A + \beta_j^B + \beta_k^C + \gamma_{ik}^{AC} + \gamma_{jk}^{BC} + \gamma_{ij}^{AB} + \gamma_{ijk}^{ABC}$$

3 Connection with binomial/multinomial regression models

- The log-linear model treat all categorical variables symmetrically as X and regard the counts in each cell as response y.
- The logistic models treat one of the categorical variables as response y and the remaining categorical variables as X.

Consider the case where r = 2 and treat it as the response variable for a logistic regression. Then start from the loglinear model, we have

$$\log \frac{P(A=1 \mid B=j, C=k)}{P(A=2 \mid B=j, C=k)}$$

= log μ_{1jk} - log μ_{2jk}
= $(\beta_1^A - \beta_2^A) + (\gamma_{1j}^{AB} - \gamma_{2j}^{AB}) + (\gamma_{1k}^{AC} - \gamma_{2k}^{AC}) + (\gamma_{1jk}^{AC} - \gamma_{2jk}^{ABC})$

Equivalently, we have the model

$$logit[P(A = 1 \mid B = j, C = k)] = \lambda + \delta_j^B + \delta_k^C + \delta_{jk}^{BC}$$

which is a logistic regression model

- A three-term interaction in the Poisson model corresponds to the interaction term in the logistic regression.
- The Poisson loglinear model and binomial logistic model also have the same score equations
- The same results hold for the multinomial baseline-category logit model

Next time: Chapters 7.3-7.5