1600 students are collected from 135 classrooms in 28 schools. We want to understand the effect of SC (exposure to a school-based curriculum or not), TV (exposure to a television-based prevention program or not) and previous THK scale on the current THK scale. We have \(1600\) samples, but some share the same school and some share the same classroom.
The multilevel model: \[y_{ics} = \beta_0 + \beta_1\text{PTHK}_{ics} + \beta_2\text{SC}_{ics} + \beta_3\text{TV}_{ics} + u_s + v_{cs} + \epsilon_{ics}\]
Smoking <- read.table("Smoking.dat", header = T)
Smoking
The LMM can be solved using R package lme4
library(lme4)
## Loading required package: Matrix
fit <- lmer(y ~ PTHK + SC + TV + (1|school) + (1|class), data = Smoking) # Fitting the variances is by REML
summary(fit)
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ PTHK + SC + TV + (1 | school) + (1 | class)
## Data: Smoking
##
## REML criterion at convergence: 5374.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5202 -0.6975 -0.0177 0.6875 3.1630
##
## Random effects:
## Groups Name Variance Std.Dev.
## class (Intercept) 0.06853 0.2618
## school (Intercept) 0.03925 0.1981
## Residual 1.60108 1.2653
## Number of obs: 1600, groups: class, 135; school, 28
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.78493 0.11295 15.803
## PTHK 0.30524 0.02590 11.786
## SC 0.47147 0.11330 4.161
## TV 0.01956 0.11330 0.173
##
## Correlation of Fixed Effects:
## (Intr) PTHK SC
## PTHK -0.493
## SC -0.503 0.025
## TV -0.521 0.015 -0.002
We can check the “predicted” value for each random effect and response
rand.eff <- ranef(fit) ## predict random effects for each school / class ## method: BLUP
pred <- predict(fit) ## fit each observation
rand.eff$school
Estimated intra-class correlation \[\text{corr}(y_{ics}, y_{i'cs}) = \frac{\hat\sigma_u^2 + \hat\sigma_v^2}{\hat\sigma_u^2 + \hat\sigma_v^2 + \hat\sigma_e^2} = \frac{0.039 + 0.069}{0.039 + 0.069 + 1.60} = 0.063\]
Estimated intra-school correlation \[\text{corr}(y_{ics}, y_{i'c's}) = \frac{\hat\sigma_u^2 }{\hat\sigma_u^2 + \hat\sigma_v^2 + \hat\sigma_e^2} = \frac{0.039}{0.039 + 0.069 + 1.60} = 0.023\] Both correlations are very small.
If we ignore the random effects
summary(lm(y ~ PTHK + SC + TV, data = Smoking))
##
## Call:
## lm(formula = y ~ PTHK + SC + TV, data = Smoking)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5635 -0.9130 -0.0626 0.8981 4.2416
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.73734 0.07866 22.088 < 2e-16 ***
## PTHK 0.32525 0.02589 12.561 < 2e-16 ***
## SC 0.47987 0.06529 7.350 3.15e-13 ***
## TV 0.04534 0.06518 0.696 0.487
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.303 on 1596 degrees of freedom
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.112
## F-statistic: 68.21 on 3 and 1596 DF, p-value: < 2.2e-16
The standard errors of SC and TV become much smaller, though the pairwise correlations among classes and schools introduced by the random effect terms are small. The explanation is that, though each pairwise correlation is small, as all pairs of classes / schools have such correlations if we have many classes / schools, the aggregation of the variance inflation would be still be large enough to affect the variance of \(\hat\beta\).
The data comes from an experiment to test the paper brightness depending on a shift operator describbed in Sheldon (1960). 5 Samples are tested on 4 different operators.
data(pulp, package = "faraway")
pulp
Visualize the data:
library(ggplot2)
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'tibble'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'pillar'
ggplot(pulp, aes(x = operator, y = bright)) + geom_point(position = position_jitter(width = 0.1, height = 0.0))
\[y_{ij} = \mu + \alpha_i + \epsilon_{ij}\] with \(\sum \alpha_i = 0\).
op <- options(contrasts = c("contr.sum", "contr.poly")) ## make sure that \sum \alpha_i = 0
model.matrix(~operator, data = pulp)
## (Intercept) operator1 operator2 operator3
## 1 1 1 0 0
## 2 1 1 0 0
## 3 1 1 0 0
## 4 1 1 0 0
## 5 1 1 0 0
## 6 1 0 1 0
## 7 1 0 1 0
## 8 1 0 1 0
## 9 1 0 1 0
## 10 1 0 1 0
## 11 1 0 0 1
## 12 1 0 0 1
## 13 1 0 0 1
## 14 1 0 0 1
## 15 1 0 0 1
## 16 1 -1 -1 -1
## 17 1 -1 -1 -1
## 18 1 -1 -1 -1
## 19 1 -1 -1 -1
## 20 1 -1 -1 -1
## attr(,"assign")
## [1] 0 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$operator
## [1] "contr.sum"
lmod <- lm(bright~operator, data = pulp)
summary(lmod)
##
## Call:
## lm(formula = bright ~ operator, data = pulp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.440 -0.195 -0.070 0.175 0.560
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.40000 0.07289 828.681 <2e-16 ***
## operator1 -0.16000 0.12624 -1.267 0.223
## operator2 -0.34000 0.12624 -2.693 0.016 *
## operator3 0.22000 0.12624 1.743 0.101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.326 on 16 degrees of freedom
## Multiple R-squared: 0.4408, Adjusted R-squared: 0.3359
## F-statistic: 4.204 on 3 and 16 DF, p-value: 0.02261
\(\alpha_4 = 0.16 + 0.34 - 0.22 = 0.28\). We calculate sample variance of \(\hat\alpha_i\)
((-0.16)^2 + (-0.34)^2 + 0.22^2 + 0.28^2)/(4-1)
## [1] 0.08933333
library(lme4)
mmod <- lmer(bright ~ 1 + (1|operator), pulp)
summary(mmod)
## Linear mixed model fit by REML ['lmerMod']
## Formula: bright ~ 1 + (1 | operator)
## Data: pulp
##
## REML criterion at convergence: 18.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4666 -0.7595 -0.1244 0.6281 1.6012
##
## Random effects:
## Groups Name Variance Std.Dev.
## operator (Intercept) 0.06808 0.2609
## Residual 0.10625 0.3260
## Number of obs: 20, groups: operator, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 60.4000 0.1494 404.2
ranef(mmod)$operator
alpha <- c(-0.16, -0.34, 0.22, 0.28)
The predicted \(\alpha_i\) from LMM can be viewed as a type of shrinkage estimator (towards \(0\)).
We test for the null \(H_0: \sigma^2 = 0\). As mentioned earlier, the LRT provides a conservative p-value
nullmod <- lm(bright ~ 1, pulp)
smod <- lmer(bright ~ 1 + (1|operator), pulp, REML = F) ## solve the full MLE
lrtstat <- as.numeric(2*(logLik(smod) - logLik(nullmod)))
pvalue <- pchisq(lrtstat, 1, lower = F)
data.frame(lrtstat, pvalue)
Should we believe that there is no different across operators? Is the p-value too conservative? Or sample size too small?
We can use parametric bootstrap to approximate the null distribution of the LRT statistics.
lrtstat <- sapply(1:1000, function(i) {
set.seed(i)
y <- unlist(simulate(nullmod))
bnull <- lm(y ~ 1)
balt <- suppressMessages(lmer(y ~ 1 + (1|operator), pulp, REML = F))
return(as.numeric(2*(logLik(balt) - logLik(bnull))))
})
mean(lrtstat > 2.5684)
## [1] 0.018
sqrt(0.018 * 0.982/1000)
## [1] 0.004204284
So we can be fairly sure that the p-value is under 0.05. We can use the RLRsim package to test for random effect terms.
library(RLRsim)
exactLRT(mmod, nullmod)
## No restrictions on fixed effects. REML-based inference preferable.
## Using likelihood evaluated at REML estimators.
## Please refit model with method="ML" for exact results.
##
## simulated finite sample distribution of LRT. (p-value based on 10000
## simulated values)
##
## data:
## LRT = 2.4435, p-value = 0.0254
qqnorm(residuals(mmod), main = "")
plot(fitted(mmod), residuals(mmod), xlab = "Fitted", ylab = "Residuals")
abline(h = 0)
Random effect models are particularly sensitive to outliers, as they depend on variance components that can be substantially inflated by unusual points.
A large jar of dried egg power was divided up into a number of samples, and we test for consistency across lab tests. Four samples were sent to 6 labs, with two labeled as G and two labeled as H, and are tested by two different technicians in each lab.
data(eggs, package = "faraway")
eggs
We fit a model: \[y_{ijkl} = \mu + L_i + T_{ij} + S_{ijk} + \epsilon_{ijkl}\]
cmod <- lmer(Fat ~ 1 + (1|Lab) + (1|Lab:Technician) + (1|Lab:Technician:Sample), data = eggs)
summary(cmod)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## Fat ~ 1 + (1 | Lab) + (1 | Lab:Technician) + (1 | Lab:Technician:Sample)
## Data: eggs
##
## REML criterion at convergence: -64.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.04098 -0.46576 0.00927 0.59713 1.54276
##
## Random effects:
## Groups Name Variance Std.Dev.
## Lab:Technician:Sample (Intercept) 0.003065 0.05536
## Lab:Technician (Intercept) 0.006980 0.08355
## Lab (Intercept) 0.005920 0.07694
## Residual 0.007196 0.08483
## Number of obs: 48, groups:
## Lab:Technician:Sample, 24; Lab:Technician, 12; Lab, 6
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.38750 0.04296 9.019
We test for the null \(H_0: \sigma_S^2 = 0\).
library(RLRsim)
## null LMM model
cmodr <- lmer(Fat ~ 1 + (1|Lab) + (1|Lab:Technician), data = eggs)
## the reduced model containing only the random effect to be tested
cmods <- lmer(Fat ~ 1 + (1|Lab:Technician:Sample), data = eggs)
exactRLRT(cmods, cmod, cmodr)
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 1.6034, p-value = 0.1011
Frou materials (A-D) are fed into a wear-testing machine. The machine can process four samples at a time and the four samples are put at 4 different positions. There might be some differences due to the positions.
data(abrasion, package = "faraway")
abrasion
Visulize the groups: run and position and two unnested groupings.
library(ggplot2)
ggplot(abrasion, aes(x = material, y =wear, shape = run, color = position)) + geom_point(position = position_jitter(width = 0.1, height = 0)) + scale_color_grey()
We fit the model \[y_{ijk} = \beta_i + \gamma_j + \theta_k + \epsilon_{ijk}\] for material \(i\), run \(j\) and position \(k\). We treat run and position as random effect.
mmod <- lmer(wear ~ material + (1|run) + (1|position), data = abrasion)
summary(mmod)
## Linear mixed model fit by REML ['lmerMod']
## Formula: wear ~ material + (1 | run) + (1 | position)
## Data: abrasion
##
## REML criterion at convergence: 103
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.08973 -0.30231 0.02697 0.42254 1.21052
##
## Random effects:
## Groups Name Variance Std.Dev.
## run (Intercept) 66.90 8.179
## position (Intercept) 107.06 10.347
## Residual 61.25 7.826
## Number of obs: 16, groups: run, 4; position, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 239.500 6.879 34.817
## material1 26.250 3.389 7.746
## material2 -19.500 3.389 -5.754
## material3 2.250 3.389 0.664
##
## Correlation of Fixed Effects:
## (Intr) matrl1 matrl2
## material1 0.000
## material2 0.000 -0.333
## material3 0.000 -0.333 -0.333
We want to test for \(H_0: \sigma_{pos}^2 = 0\) and \(H_0: \sigma_{run}^2 = 0\)
## Null model
mmodr <- lmer(wear ~ material + (1|run), data = abrasion)
## the reduced model containing only the random effect to be tested
mmodp <- lmer(wear ~ material + (1|position), data = abrasion)
exactRLRT(mmodp, mmod, mmodr)
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 4.5931, p-value = 0.0136
exactRLRT(mmodr, mmod, mmodp)
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 3.0459, p-value = 0.033
Both are significant.