STAT347: Generalized Linear Models
Lecture 10

Today’s topics: Chapters 7.3-7.5
e Negative Binomial GLM
e Zero inflated models: ZIP, ZINB and hurdle models

e Revisit the example of the horseshoe crab dataset

1 Model for over-dispersed counts: Negative
Binomial GLM

Think about the scenario y; ~ Poisson()\;) but log()\;) = X 8+ ¢; indicat-
ing that X; can not fully explain A;. Then

E(y:) = E[E(y: | M)] = E(M)
while
Var(y;) = E[Var(y; | Ai)] + Var[E(y; | Ai)] = E(Ai) + Var(X\i) > E(y;)
which show an over-dispersion of the distribution of y; compared with a
Poisson distribution.
e For example, we saw the over-dispersion issue in the horseshoe satel-
lites dataset in Data Example 1 and homework 1, 1.22(a).

e Over-dispersion happens in Poisson and Binomial (Multinomial) GLM
models as the variance is completely determined by the mean.

e There is no over-dispersion issue in linear models as linear models has
an extra dispersion parameter.

e We will talk about general solutions for over-dispersion issues in later
chapters.

For counts response, we can use a Negative binomial distribution to solve
the over-dispersion issue.

Negative binomial distribution: y ~ Poisson(A) and A ~ Gamma(y, k)
[E(X) = u]. The probability function of y is

fys k) = F(gg(;ﬁ) (Mik>y <uik)k

where v = 1/k is called a dispersion parameter.

o E(y) = p, Var(y) = p+yp?
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e Negative Binomial distribution with fixed k belongs to the exponen-
tial family: 0 = log(puy/(uy + 1)) and b(0) = —1/ylog(uy + 1) =
1/ylog(1 — ¢?)

Negative Binomial GLM:

e We assume y; ~ NB(u;, k;), with the link function g(u;) = X7 B.
Typically, we assume they share the same dispersion, soy; = 1/k; =~
for all 3.

e As an extension of Poisson GLM, a common link function is the log
link: g(pi) = log(us)-

e When g(u;) = log(u;), The score equation for g is

Yi — i fadi; = Yi — i
(kN
— ity S T

l‘ij:()

e As E(0°L/0B;0v) = 0, asymptotically B and 4 are independent.
Thus, the asymptotic variance of B would be the same no matter
what « is (Agresti book chapter 7.3.3).

Var(f) = (XTWX) ™!

2 Models for zero-inflated counts

For a Poisson distribution y ~ Poisson(u): P(y =0) =e™#

For a Negative Binomial distribution y ~ NB(u, k): P(y =0) = (ﬁ)k
In practice, there may be way more 0 counts than what these distributions
can allow. Example: y; is the number of times going to a gym for the past
week and there may be a substantial proportion who never exercise (you
may see two modes in the distribution).

2.1 Zero-inflated Poisson / Negative Binomial (ZIP /ZINB)
models
The ZIP model:

_ 0 with probability 1 — ¢;
vi Poisson()\;) with probability ¢;

We can interpret this as having a latent binary variable Z; ~ Bernoulli(¢;).

If z; = 0 then y; = 0, and if z; = 1 then y; follows a Poisson distribution.
For the GLM model, a common assumption for the links are:

logit(¢:) = X381, log(\i) = X5
e The mean is E(y;) = ¢;A\; and the variance is
Var(y;) = ¢idi[1 + (1 — ¢3)Ai] > E(yi)

So zero-inflation can also cause over-dispersion
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e We may still see over-dispersion conditional on Z;, then we can use a
ZINB model where

_ 0 with probability 1 — ¢;
Yi™ INB(A\i, k) with probability ¢;

e We can use MLE to solve both the ZIP and ZINB model.

2.2 Hurdle model

The ZIP/ZINB model do not allow zero deflation. The Hurdle model sep-
arates the analysis of zero counts and positive counts.

Let
T ity >0

The Hurdle model assumes that y; ~ Bernoulli(7;) and y; | y; > 0 follows
a truncated-at-zero Poisson (Poi(y;)) / Negative Binomial (NB(u;,y)) dis-
tribution. Let the untruncated probability function be f(y;; p;), then

_ S kpi)
1= f05 )

P(yi:())zlfm

P(y; = k) for k # 0

For the GLM, we may assume
: _ T _ T
logit(m;) = Xy;81, log(u;) = X3;82

e We can estimate 3; and (5 separately using two separate likelihoods:

L(B1, B2) = L(B1) + L(B2)
e There is zero deflation if 1 — m; < f(0; u;)

3 Revisit the horseshoe crab data

Please see R notebook Example 6.



