STAT347: Generalized Linear Models Lecture 10

Today's topics: Chapters 7.3-7.5

- Negative Binomial GLM
- Zero inflated models: ZIP, ZINB and hurdle models
- Revisit the example of the horseshoe crab dataset

1 Model for over-dispersed counts: Negative Binomial GLM

Think about the scenario $y_i \sim \text{Poisson}(\lambda_i)$ but $\log(\lambda_i) = X_i^T \beta + \epsilon_i$ indicating that X_i can not fully explain λ_i . Then

$$E(y_i) = E[E(y_i \mid \lambda_i)] = E(\lambda_i)$$

while

$$Var(y_i) = E[Var(y_i \mid \lambda_i)] + Var[E(y_i \mid \lambda_i)] = E(\lambda_i) + Var(\lambda_i) > E(y_i)$$

which show an over-dispersion of the distribution of y_i compared with a Poisson distribution.

- For example, we saw the over-dispersion issue in the horseshoe satellites dataset in Data Example 1 and homework 1, 1.22(a).
- Over-dispersion happens in Poisson and Binomial (Multinomial) GLM models as the variance is completely determined by the mean.
- There is no over-dispersion issue in linear models as linear models has an extra dispersion parameter.
- We will talk about general solutions for over-dispersion issues in later chapters.

For counts response, we can use a Negative binomial distribution to solve the over-dispersion issue.

Negative binomial distribution: $y \sim \text{Poisson}(\lambda)$ and $\lambda \sim \text{Gamma}(\mu, k)$ $[\mathbb{E}(\lambda) = \mu]$. The probability function of y is

$$f(y; \mu, k) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{\mu}{\mu+k}\right)^y \left(\frac{k}{\mu+k}\right)^k$$

where $\gamma = 1/k$ is called a dispersion parameter.

•
$$\mathbb{E}(y) = \mu$$
, $\operatorname{Var}(y) = \mu + \gamma \mu^2$

• Negative Binomial distribution with fixed k belongs to the exponential family: $\theta = \log(\mu\gamma/(\mu\gamma + 1))$ and $b(\theta) = -1/\gamma\log(\mu\gamma + 1) = 1/\gamma\log(1-e^{\theta})$

Negative Binomial GLM:

- We assume $y_i \sim \text{NB}(\mu_i, k_i)$, with the link function $g(\mu_i) = X_i^T \beta$. Typically, we assume they share the same dispersion, so $\gamma_i = 1/k_i \equiv \gamma$ for all i.
- As an extension of Poisson GLM, a common link function is the log link: $q(\mu_i) = \log(\mu_i)$.
- When $g(\mu_i) = \log(\mu_i)$, The score equation for β is

$$\sum_{i} \frac{y_{i} - \mu_{i}}{\mu_{i} + \gamma \mu_{i}^{2}} \mu_{i} x_{ij} = \sum_{i} \frac{y_{i} - \mu_{i}}{1 + \gamma \mu_{i}} x_{ij} = 0$$

• As $\mathbb{E}(\partial^2 L/\partial \beta_j \partial \gamma) = 0$, asymptotically $\hat{\beta}$ and $\hat{\gamma}$ are independent. Thus, the asymptotic variance of $\hat{\beta}$ would be the same no matter what γ is (Agresti book chapter 7.3.3).

$$\widehat{\operatorname{Var}}(\hat{\beta}) = (X^T \hat{W} X)^{-1}$$

2 Models for zero-inflated counts

For a Poisson distribution $y \sim \text{Poisson}(\mu)$: $P(y=0) = e^{-\mu}$

For a Negative Binomial distribution
$$y \sim NB(\mu, k)$$
: $P(y = 0) = \left(\frac{k}{\mu + k}\right)^k$

In practice, there may be way more 0 counts than what these distributions can allow. Example: y_i is the number of times going to a gym for the past week and there may be a substantial proportion who never exercise (you may see two modes in the distribution).

2.1 Zero-inflated Poisson / Negative Binomial (ZIP/ZINB) models

The ZIP model:

$$y_i \sim \begin{cases} 0 & \text{with probability } 1 - \phi_i \\ \text{Poisson}(\lambda_i) & \text{with probability } \phi_i \end{cases}$$

We can interpret this as having a latent binary variable $Z_i \sim \text{Bernoulli}(\phi_i)$. If $z_i = 0$ then $y_i = 0$, and if $z_i = 1$ then y_i follows a Poisson distribution. For the GLM model, a common assumption for the links are:

$$logit(\phi_i) = X_{1i}^T \beta_1, \quad log(\lambda_i) = X_{2i}^T \beta_2$$

• The mean is $E(y_i) = \phi_i \lambda_i$ and the variance is

$$Var(y_i) = \phi_i \lambda_i [1 + (1 - \phi_i) \lambda_i] > E(y_i)$$

So zero-inflation can also cause over-dispersion

• We may still see over-dispersion conditional on Z_i , then we can use a ZINB model where

$$y_i \sim \begin{cases} 0 & \text{with probability } 1 - \phi_i \\ \text{NB}(\lambda_i, k) & \text{with probability } \phi_i \end{cases}$$

• We can use MLE to solve both the ZIP and ZINB model.

2.2 Hurdle model

The ZIP/ZINB model do not allow zero deflation. The Hurdle model separates the analysis of zero counts and positive counts.

Let

$$y_i' = \begin{cases} 0 & \text{if } y_i = 0\\ 1 & \text{if } y_i > 0 \end{cases}$$

The Hurdle model assumes that $y_i' \sim \text{Bernoulli}(\pi_i)$ and $y_i \mid y_i > 0$ follows a truncated-at-zero Poisson $(\text{Poi}(\mu_i)) / \text{Negative Binomial } (\text{NB}(\mu_i, \gamma))$ distribution. Let the untruncated probability function be $f(y_i; \mu_i)$, then

$$P(y_i = k) = \pi_i \frac{f(k; \mu_i)}{1 - f(0; \mu_i)}, \quad \text{for } k \neq 0$$

$$P(y_i = 0) = 1 - \pi_i$$

For the GLM, we may assume

$$\operatorname{logit}(\pi_i) = X_{1i}^T \beta_1, \quad \log(\mu_i) = X_{2i}^T \beta_2$$

- We can estimate β_i and β_2 separately using two separate likelihoods: $L(\beta_1, \beta_2) = L(\beta_1) + L(\beta_2)$
- There is zero deflation if $1 \pi_i \leq f(0; \mu_i)$

3 Revisit the horseshoe crab data

Please see R notebook Example 6.