STAT347: Generalized Linear Models Lecture 10

Winter, 2023 Jingshu Wang

Today's topics:

- Negative Binomial GLM
- Zero inflated models: ZIP, ZINB and hurdle models
- Revisit the example of the horseshoe crab dataset

Over-dispersion in the Poisson model

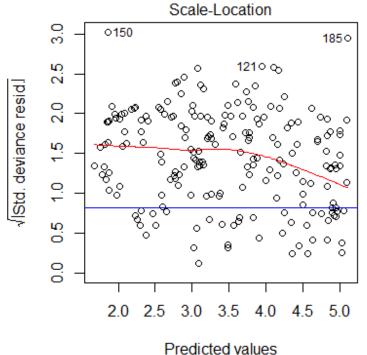
- Poisson regression assume that $Var[y_i|X_i] = \mathbb{E}[y_i|X_i]$
- Over-dispersion: in practice, the counts y_i can be noisier than assumed in the Poisson distribution
- For instance, if $\log(\lambda_i) = X_i^T \beta + \epsilon_i$ indicating that X_i can not fully explain λ_i . Then

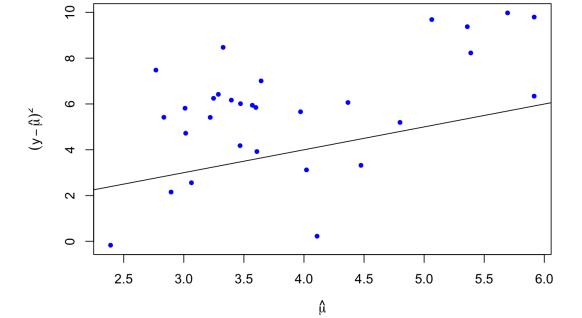
$$E(y_i) = E[E(y_i \mid \lambda_i)] = E(\lambda_i)$$

while

$$\operatorname{Var}(y_i) = E[\operatorname{Var}(y_i \mid \lambda_i)] + \operatorname{Var}[E(y_i \mid \lambda_i)] = E(\lambda_i) + \operatorname{Var}(\lambda_i) > E(y_i)$$

Over-dispersion examples





https://stats.stackexchange.com/questions/331086/investigateoverdispersion-in-a-plot-for-a-poisson-regression

https://towardsdatascience.com/adjust-for-overdispersion-in-poisson-regression-4b1f52baa2f1

Over-dispersion in the Poisson model

- For example, we saw the over-dispersion issue in the horseshoe satellites dataset in Data Example 1 and homework 1, 1.22(a).
- Over-dispersion happens in Poisson and Binomial (Multinomial) GLM models as the variance is completely determined by the mean.
- There is no over-dispersion issue in linear models as linear models has an extra dispersion parameter.
- We will talk about general solutions for over-dispersion issues in later chapters.

Negative binomial distribution

Negative binomial distribution: $y \sim \text{Poisson}(\lambda)$ and $\lambda \sim \text{Gamma}(\mu, k)$ $[\mathbb{E}(\lambda) = \mu]$. The probability function of y is

$$f(y;\mu,k) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{\mu}{\mu+k}\right)^y \left(\frac{k}{\mu+k}\right)^k$$

where $\gamma = 1/k$ is called a dispersion parameter.

•
$$\mathbb{E}(y) = \mu$$
, $\operatorname{Var}(y) = \mu + \gamma \mu^2$

• Negative Binomial distribution with fixed k belongs to the exponential family: $\theta = \log(\mu\gamma/(\mu\gamma + 1))$ and $b(\theta) = -1/\gamma \log(\mu\gamma + 1) = 1/\gamma \log(1 - e^{\theta})$

Negative binomial GLM

• We assume that

$$y_i \sim \mathrm{NB}(\mu_i, k_i)$$

with the link function $g(\mu_i) = X_i^T \beta$.

- Typically, we assume that all samples share the same dispersion, so $\gamma_i = \frac{1}{k_i} = \gamma_i$.
- As an extension of the Poisson GLM, a common link for NB GLM is still the loglinear link: $g(\mu_i) = \log(\mu_i)$
- Score equation for β

$$\sum_{i} \frac{y_i - \mu_i}{\mu_i + \gamma \mu_i^2} \mu_i x_{ij} = \sum_{i} \frac{y_i - \mu_i}{1 + \gamma \mu_i} x_{ij} = 0$$

Negative binomial GLM

A bit about the inference:

• The hessian matrix has the term

$$\frac{\partial^2 L(\boldsymbol{\beta}, \boldsymbol{\gamma}; \mathbf{y})}{\partial \beta_j \partial \boldsymbol{\gamma}} = -\sum_i \frac{(y_i - \mu_i) x_{ij}}{(1 + \boldsymbol{\gamma} \mu_i)^2} \left(\frac{\partial \mu_i}{\partial \eta_i}\right).$$

Thus, $E(\partial^2 L/\partial \beta_i \partial \gamma) = 0$ for each *j*, and β and γ are orthogonal parameters

• the asymptotic variance of $\hat{\beta}$ would be the same no matter what γ is (Agresti book chapter 7.3.3)

$$\widehat{\operatorname{Var}}(\hat{\beta}) = (X^T \hat{W} X)^{-1}$$

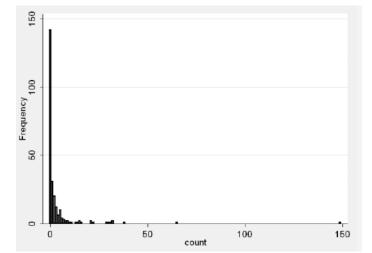
• $w_i = \mu_i / (1 + \gamma \mu_i)$

Zero-inflated counts

For a Poisson distribution $y \sim \text{Poisson}(\mu)$: $P(y = 0) = e^{-\mu}$

For a Negative Binomial distribution $y \sim \text{NB}(\mu, k)$: $P(y = 0) = \left(\frac{k}{\mu+k}\right)^k$

- In practice, there may be way more 0 counts than what these distributions can allow
- Example: y_i is the number of times going to a gym for the past week and there may be a substantial proportion who never exercise



Zero-inflated Poisson models

The ZIP model:

$$y_i \sim \begin{cases} 0 & \text{with probability } 1 - \phi_i \\ \text{Poisson}(\lambda_i) & \text{with probability } \phi_i \end{cases}$$

We can interpret this as having a latent binary variable $Z_i \sim \text{Bernoulli}(\phi_i)$. If $z_i = 0$ then $y_i = 0$, and if $z_i = 1$ then y_i follows a Poisson distribution. For the GLM model, a common assumption for the links are:

$$logit(\phi_i) = X_{1i}^T \beta_1, \quad log(\lambda_i) = X_{2i}^T \beta_2$$

• The mean is $E(y_i) = \phi_i \lambda_i$ and the variance is

$$\operatorname{Var}(y_i) = \phi_i \lambda_i [1 + (1 - \phi_i) \lambda_i] > E(y_i)$$

So zero-inflation can also cause over-dispersion

Zero-inflated Negative Binomial models

• We may still see over-dispersion conditional on Z_i , then we can use a ZINB model where

$$y_i \sim \begin{cases} 0 & \text{with probability } 1 - \phi_i \\ \text{NB}(\lambda_i, k) & \text{with probability } \phi_i \end{cases}$$

- We can still use MLE to solve both the ZIP and ZINB model
- The ZIP/ZINB model do not allow zero deflation.

The Hurdle model

• The Hurdle model separates the analysis of zero counts and positive counts.

Let

$$y_i' = egin{cases} 0 & ext{if } y_i = 0 \ 1 & ext{if } y_i > 0 \end{cases}$$

The Hurdle model assumes that $y'_i \sim \text{Bernoulli}(\pi_i)$ and $y_i | y_i > 0$ follows a truncated-at-zero Poisson (Poi (μ_i)) / Negative Binomial (NB (μ_i, γ)) distribution. Let the untruncated probability function be $f(y_i; \mu_i)$, then

$$P(y_i = k) = \pi_i \frac{f(k; \mu_i)}{1 - f(0; \mu_i)}, \quad \text{for } k \neq 0$$
$$P(y_i = 0) = 1 - \pi_i$$

For the GLM, we may assume

 $logit(\pi_i) = X_{1i}^T \beta_1, \quad log(\mu_i) = X_{2i}^T \beta_2$

The Hurdle model

The joint likelihood function for the two-part hurdle model is

$$\mathcal{E}(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}) = \prod_{i=1}^{n} (1 - \pi_{i})^{I(y_{i}=0)} \left[\pi_{i} \frac{f(y_{i}; \mu_{i})}{1 - f(0; \mu_{i})} \right]^{1 - I(y_{i}=0)},$$

where $I(\cdot)$ is the indicator function. If $(1 - \pi_i) > f(0; \mu_i)$ for every *i*, the model represents zero inflation. The log-likelihood separates into two terms, $L(\beta_1, \beta_2) = L_1(\beta_1) + L_2(\beta_2)$, where

$$L_{1}(\boldsymbol{\beta}_{1}) = \sum_{y_{i}=0} \left[\log \left(1 - \pi_{i}\right) \right] + \sum_{y_{i}>0} \log \left(\pi_{i}\right)$$
$$L_{2}(\boldsymbol{\beta}_{2}) = \sum_{y_{i}>0} \left\{ \log f\left(y_{i}; \exp(\boldsymbol{x}_{2i}\boldsymbol{\beta}_{2})\right) - \log \left[1 - f(0; \exp(\boldsymbol{x}_{2i}\boldsymbol{\beta}_{2}))\right] \right\}$$

Revisit the horseshoe crab data

• Check Example6 R notebook