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Today’s topics:

* Negative Binomial GLM
e Zero inflated models: ZIP, ZINB and hurdle models

* Revisit the example of the horseshoe crab dataset



Over-dispersion in the Poisson model

* Poisson regression assume that Var|y;|X;] = E|y;|X;]
* Over-dispersion: in practice, the counts y; can be noisier than
assumed in the Poisson distribution

* Forinstance, iflog(1;) = X/ S + ¢; indicating that X; can not fully
explain A;. Then

E(y;) = E[E(y; | )] = E(N)

while

Var(y;) = E[Var(y; | \;)] + Var[E(y; | \;)] = E(X\;) + Var(\;) > E(y;)



Over-dispersion examples
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https://stats.stackexchange.com/questions/331086/investigate-

. S . ; https://towardsdatascience.com/adjust-for-overdispersion-in-poisson-regression-4b1f52baa2f1
overdispersion-in-a-plot-for-a-poisson-regression



Over-dispersion in the Poisson model

 For example, we saw the over-dispersion issue in the horseshoe
satellites dataset in Data Example 1 and homework 1, 1.22(a).

 Over-dispersion happens in Poisson and Binomial (Multinomial) GLM
models as the variance is completely determined by the mean.

 There is no over-dispersion issue in linear models as linear models
has an extra dispersion parameter.

 We will talk about general solutions for over-dispersion issues in later
chapters.



Negative binomial distribution

Negative binomial distribution: y ~ Poisson(A) and A ~ Gamma(u, k)
[E()\) = u]. The probability function of y is

k) = et B () ()

where v = 1/k is called a dispersion parameter.

e E(y) =p, Var(y)=p+yp’

e Negative Binomial distribution with fixed k& belongs to the exponen-
tial family: 6 = log(uvy/(uy + 1)) and b(0) = —1/vlog(uy + 1) =
1/ylog(1 —¢€°)



Negative binomial GLM

e We assume that
Yy o~ NB(“iaki)

with the link function g(u;) = X/ .
* Typically, we assume that all samples share the same dispersion, so y; = ki =
l
y.
 As an extension of the Poisson GLM, a common link for NB GLM is still the
loglinear link: g(u;) = log(u;)
* Score equation for 3
Yi — Hs Yi — Hs

HiZij =
~ ity A Ly

ZCijZO



Negative binomial GLM

A bit about the inference:
e The hessian matrix has the term

O°L(B,v;y) _ i = Hx; (op
- on; )

03,0y = (14 yu;)?

Thus, E(0*L/ dp;0y) = 0 for each j, and B and y are orthogonal parameters

* the asymptotic variance of ﬁ would be the same no matter what y is (Agresti
book chapter 7.3.3)

Var(8) = (XTWX)™?

 w; =u/(1+yu)



/ero-inflated counts

For a Poisson distribution y ~ Poisson(u): P(y =0) =e™#

k
For a Negative Binomial distribution y ~ NB(u, k): P(y =0) = ( ﬁ)

* |In practice, there may be way more 0 counts than what these

distributions can allow
* Example: y; is the number of times going to a gym for the past week

and there may be a substantial proportion who never exercise
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/ero-inflated Poisson models
The ZIP model:

| 0 with probability 1 — ¢;
4 Poisson()\;) with probability ¢;

We can interpret this as having a latent binary variable Z; ~ Bernoulli(¢;).
If z; = 0 then y; = 0, and if z; = 1 then y; follows a Poisson distribution.
For the GLM model, a common assumption for the links are:

logit(¢) = X181, log(A\;) = X3,89
e The mean is E(y;) = ¢;\; and the variance is
Var(y;) = oi\i[1 4+ (1 — i) Ni| > E(y;)

So zero-inflation can also cause over-dispersion



/Zero-inflated Negative Binomial models

e We may still see over-dispersion conditional on Z;, then we can use a
ZINB model where

| 0 with probability 1 — ¢;
" INB()\;, k) with probability ¢;

e We can still use MLE to solve both the ZIP and ZINB model

* The ZIP/ZINB model do not allow zero deflation.



The Hurdle model

* The Hurdle model separates the analysis of zero counts and

positive counts.
Let

’ 1 ify; >0

The Hurdle model assumes that y, ~ Bernoulli(7;) and y; | y; > 0 follows
a truncated-at-zero Poisson (Poi(y;)) / Negative Binomial (NB(u;,y)) dis-
tribution. Let the untruncated probability function be f(y;; u;), then

AL,
P(yi—k)—ml—f(o;uz‘)’

P(yi:O):l—wi

for kK #0

For the GLM, we may assume

logit(7;) = Xﬂﬁh log(pi) = Xg;ﬁz



The Hurdle model

The joint likelihood function for the two-part hurdle model 1s

n f(y ) I—I(Yi=0)
B, B =] |- i)’@F")[i kel ] :
v ,11 " ﬂl_f(();ﬂi)

where I(-) 1s the indicator function. If (1 — z;) > f(O; u;) for every i, the model
represents zero inflation. The log-likelihood separates into two terms, L(f, B,) =

Ll (ﬁl) + Lz(ﬁz), where

Li(B)) = Z log (1 - ;)| + Z log (=;)

y;i=0 y;>0

L,(B,) = Z {logf (y;; exp(x,;8,)) — log [1 — £(0; exp(x,;8,))| }

yi>0



Revisit the horseshoe crab data

 Check Example6 R notebook



