
1

STAT347: Generalized Linear Models

Lecture 11

Today’s topics: Chapters 8

• Negative Binomial GLM and Beta-Binomial GLM

1 Violations of the variance assumptions in
GLM

In earlier models, we typically have assumptions on the variance of yi | Xi:

• In linear models, we assume Var(yi) = σ2 (or more generally Var(yi) =
wiσ

2 with known wi)

• In GLM with Binomial / Multinomial and Poisson distributions, we
assume a fixed mean-variance relationship

• In practice, we can have over-dispersed/under-dispersed data or data
with unequal variance.

• With wrong variance assumption but correct mean assumption (link

function), we typically still get consistent point estimate β̂ (though
likely not the optimal one) and unreliable uncertainty quantification.

2 Over-dispersion

When we apply the standard GLM models assuming the data are Binomial
or Poisson distributed to real data, it’s common to see over-dispersion. Let
v?(yi) be the variance of yi under our model assumption.

• v?(yi) = nipi(1 − pi) for Binomial data and v?(yi) = µi for Poisson
counts.

• Over-dispersion: the actual Var(yi) > v?(yi).

• We can check whether there is over-dispersion by plotting v̂?(yi) V.S.
(yi − µ̂i)2 (as shown in R Data Example 6)

2.1 Negative Binomial distribution for dispersed counts

This is what we have covered in Lecture 10.

• Negative binomial distribution: yi ∼ Poisson(λi) and λi ∼ Gamma(µi, ki).
Then yi ∼ NB(µi, ki)

• We have E(yi) = µi and Var(yi) = µi + γiµ
2
i where γi = 1/ki is the

dispersion parameter.
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• NB GLM: we assume that log(µi) = XT
i β and γi ≡ γ.

• The ZIP / ZINB GLM can deal with over-dispersion caused by zero
inflation

2.2 Beta-Binomial distribution for dispersed Binary
data

For the ungrouped Binary data, previous Binary GLM assumed that con-
ditional on having the same Xi, the yi are i.i.d. Bernoulli trials. But what
if the samples are clustered? (Read Chapter 8.2.1).

We may still assume independent grouped data samples, but the individual
within each group are allowed to be correlated.

Consider the grouped data. Analogous to the Poisson case, we can have
the scenario yi ∼ Binomial(ni, pi) but logit(pi) = XT

i β + εi. We will then
have

Var(yi) > nipi(1− pi)

• If you treat yi as a sum of Bernoulli variables yi =
∑
j Zij where

Zij ∼ Bernoulli(pi), then randomness in pi causes dependence among
Zij .

• The Beta-binomial distribution assumes that y ∼ Binomial(n, p) and
p ∼ beta(α, β). The beta distribution of p has the density function:

f(p;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

and
E(p) = µ =

α

α+ β

The Beta-binomial distribution then has the property that

E(y) = nµ, Var(y) = nµ(1− µ) [1 + (n− 1)ρ]

where ρ = 1/(α+ β + 1).

• Beta-binomial GLM:

We assume the grouped data follows yi ∼ Beta-binomial(ni, µi, ρ)
where E(yi) = niµi. The relation between µi and Xi are the same as
we assumed for the standard binary GLM. For example:

logit(µi) = XT
i β

Both β and ρ are unknown but we can estimate using MLE.


