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Today’s topics:

• Beta-binomial GLM



In earlier models, we typically have assumptions on the variance of 𝑦!|𝑋!
• Gaussian linear model: Var 𝑦! = 𝜎!
• GLM with Binomial / Multinomial / Poisson models: fixed mean-

variance relationship

As we saw earlier, real data can have over-dispersion / under-dispersion 
or unequal variances, which violates these variance assumptions

• With wrong variance assumption but correct mean assumption (link
function)
• Typically still get consistent point estimate &𝛽
• Inference on &𝛽 can be heavily impacted

Violation of the variance assumptions in GLM



• Poisson regression assume that Var 𝑦" 𝑋"] = 𝔼 𝑦" 𝑋"]
• Over-dispersion: in practice, the counts 𝑦" can be noisier than 

assumed in the Poisson distribution

• For instance, if log(𝜆!) = 𝑋!"𝛽 + 𝜖! indicating that 𝑋! can not fully 
explain 𝜆!. Then

Over-dispersion in the Poisson model



Over-dispersion examples

https://stats.stackexchange.com/questions/331086/investigate-
overdispersion-in-a-plot-for-a-poisson-regression https://towardsdatascience.com/adjust-for-overdispersion-in-poisson-regression-4b1f52baa2f1



For the ungrouped Binary data, previous Binary GLM assumed that conditional 
on having the same 𝑋! , the 𝑦! are i.i.d. Bernoulli trials. 

What if the samples within each group are correlated?
• Analogous to the Poisson case, we can have the scenario

• Such a hierarchical model leads to variance inflation:

• If you treat 𝑦" as a sum of Bernoulli variables 𝑦" = ∑# 𝑍"# where 
𝑍"#~Bernoulli(𝑝"), then randomness in 𝑝" causes dependence among 𝑍"#.

Variance inflation in binomial GLM



Negative binomial distribution
• Recall that we defined the negative binomial distribution for the 

over-dispersed counts

• It is defined as compound distribution (Gamma-Poisson mixture)

• Mean and variance of a Gamma distribution: 

𝜇 = 𝑘𝜃, Var 𝜆 = 𝑘𝜃! =
𝜇!

𝑘
= 𝛾𝜇!

• For NB distribution



Beta-binomial distribution

• Beta distribution
• Mean and variance of a Beta distribution: 

𝜇 =
𝛼

𝛼 + 𝛽
,

Var 𝑝 =
𝛼𝛽

𝛼 + 𝛽 !(𝛼 + 𝛽 + 1)
= 𝜇(1 − 𝜇)

• For Beta-binomial distribution distribution



Beta-binomial GLM

• We assume that

with the link function 𝑔 𝜇" = 𝑋"$𝛽. 𝔼 𝑦" = 𝑛"𝜇"
• As before, we assume that all samples share the same dispersion, 

so there is only one unknown dispersion parameter 𝜌. 
• A common link for Beta-binomial GLM is still the logit link: 

• Both 𝛽 and 𝜌 are unknown but we can estimate using MLE.


