STAT347: Generalized Linear Models
 Lecture 11

Winter, 2023
Jingshu Wang

Today's topics:

- Beta-binomial GLM

Violation of the variance assumptions in GLM

In earlier models, we typically have assumptions on the variance of $y_{i} \mid X_{i}$

- Gaussian linear model: $\operatorname{Var}\left(y_{i}\right)=\sigma^{2}$
- GLM with Binomial / Multinomial / Poisson models: fixed meanvariance relationship

As we saw earlier, real data can have over-dispersion / under-dispersion or unequal variances, which violates these variance assumptions

- With wrong variance assumption but correct mean assumption (link function)
- Typically still get consistent point estimate $\hat{\beta}$
- Inference on $\hat{\beta}$ can be heavily impacted

Over-dispersion in the Poisson model

- Poisson regression assume that $\operatorname{Var}\left[y_{i} \mid X_{i}\right]=\mathbb{E}\left[y_{i} \mid X_{i}\right]$
- Over-dispersion: in practice, the counts y_{i} can be noisier than assumed in the Poisson distribution
- For instance, if $\log \left(\lambda_{i}\right)=X_{i}^{T} \beta+\epsilon_{i}$ indicating that X_{i} can not fully explain λ_{i}. Then

$$
E\left(y_{i}\right)=E\left[E\left(y_{i} \mid \lambda_{i}\right)\right]=E\left(\lambda_{i}\right)
$$

while

$$
\operatorname{Var}\left(y_{i}\right)=E\left[\operatorname{Var}\left(y_{i} \mid \lambda_{i}\right)\right]+\operatorname{Var}\left[E\left(y_{i} \mid \lambda_{i}\right)\right]=E\left(\lambda_{i}\right)+\operatorname{Var}\left(\lambda_{i}\right)>E\left(y_{i}\right)
$$

Over-dispersion examples

Predicted values

Variance inflation in binomial GLM

For the ungrouped Binary data, previous Binary GLM assumed that conditional on having the same X_{i}, the y_{i} are i.i.d. Bernoulli trials.

What if the samples within each group are correlated?

- Analogous to the Poisson case, we can have the scenario

$$
y_{i} \sim \operatorname{Binomial}\left(n_{i}, p_{i}\right) \text { but } \operatorname{logit}\left(p_{i}\right)=X_{i}^{T} \beta+\epsilon_{i}
$$

- Such a hierarchical model leads to variance inflation:

$$
\operatorname{Var}\left(y_{i}\right)>n_{i} p_{i}\left(1-p_{i}\right)
$$

- If you treat y_{i} as a sum of Bernoulli variables $y_{i}=\sum_{j} Z_{i j}$ where $Z_{i j} \sim \operatorname{Bernoulli}\left(p_{i}\right)$, then randomness in p_{i} causes dependence among $Z_{i j}$.

Negative binomial distribution

- Recall that we defined the negative binomial distribution for the over-dispersed counts

Negative binomial distribution: $y \sim \operatorname{Poisson}(\lambda)$ and $\lambda \sim \operatorname{Gamma}(\mu, k)$ $[\mathbb{E}(\lambda)=\mu]$. The probability function of y is

$$
f(y ; \mu, k)=\frac{\Gamma(y+k)}{\Gamma(k) \Gamma(y+1)}\left(\frac{\mu}{\mu+k}\right)^{y}\left(\frac{k}{\mu+k}\right)^{k}
$$

- It is defined as compound distribution (Gamma-Poisson mixture)

- Mean and variance of a Gamma distribution:

$$
\mu=k \theta, \quad \operatorname{Var}(\lambda)=k \theta^{2}=\frac{\mu^{2}}{k}=\gamma \mu^{2}
$$

- For NB distribution

$$
\mathbb{E}(y)=\mu, \quad \operatorname{Var}(y)=\mu+\gamma \mu^{2}
$$

Beta-binomial distribution

- The Beta-binomial distribution assumes that $y \sim \operatorname{Binomial}(n, p)$ and $p \sim \operatorname{beta}(\alpha, \beta)$. The beta distribution of p has the density function:

$$
f(p ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

- Beta distribution

- Mean and variance of a Beta distribution:

$$
\begin{aligned}
& \mu=\frac{\alpha}{\alpha+\beta} \\
& \operatorname{Var}(p)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}=\mu(1-\mu)
\end{aligned}
$$

- For Beta-binomial distribution distribution

$$
E(y)=n \mu, \quad \operatorname{Var}(y)=n \mu(1-\mu)[1+(n-1) \rho]
$$

where $\rho=1 /(\alpha+\beta+1)$.

Beta-binomial GLM

- We assume that

$$
y_{i} \sim \operatorname{Beta-binomial}\left(n_{i}, \mu_{i}, \rho\right)
$$

with the link function $g\left(\mu_{i}\right)=X_{i}^{T} \beta \cdot \mathbb{E}\left(y_{i}\right)=n_{i} \mu_{i}$

- As before, we assume that all samples share the same dispersion, so there is only one unknown dispersion parameter ρ.
- A common link for Beta-binomial GLM is still the logit link:

$$
\operatorname{logit}\left(\mu_{i}\right)=X_{i}^{T} \beta
$$

- Both β and ρ are unknown but we can estimate using MLE.

