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Today’s topics:

e Beta-binomial GLM



Violation of the variance assumptions in GLM

In earlier models, we typically have assumptions on the variance of y;|X;

 Gaussian linear model: Var(y;) = o2

 GLM with Binomial / Multinomial / Poisson models: fixed mean-
variance relationship

As we saw earlier, real data can have over-dispersion / under-dispersion
or unequal variances, which violates these variance assumptions

 With wrong variance assumption but correct mean assumption (link
function)
* Typically still get consistent point estimate ,BA’
* |nference on ,5’ can be heavily impacted



Over-dispersion in the Poisson model

* Poisson regression assume that Var|y;|X;] = E|y;|X;]
* Over-dispersion: in practice, the counts y; can be noisier than
assumed in the Poisson distribution

* Forinstance, iflog(1;) = X/ S + ¢; indicating that X; can not fully
explain A;. Then

E(y;) = E[E(y; | )] = E(N)

while

Var(y;) = E[Var(y; | \;)] + Var[E(y; | \;)] = E(X\;) + Var(\;) > E(y;)



Over-dispersion examples
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Predicted values

https://stats.stackexchange.com/questions/331086/investigate-

. T . . https://towardsdatascience.com/adjust-for-overdispersion-in-poisson-regression-4b1f52baa2f1
overdispersion-in-a-plot-for-a-poisson-regression



Variance inflation in binomial GLM

For the ungrouped Binary data, previous Binary GLM assumed that conditional
on having the same X;, the y; are i.i.d. Bernoulli trials.

What if the samples within each group are correlated?
* Analogous to the Poisson case, we can have the scenario

y; ~ Binomial(n;, p;) but logit(p;) = X! B + €

e Such a hierarchical model leads to variance inflation:
Var(y;) > n;pi(1 — p;)

* Ifyou treat y; as a sum of Bernoulli variables y; = Zj Zi; where
Z;i~Bernoulli(p;), then randomness in p; causes dependence among Z;;.



Negative binomial distribution

* Recall that we defined the negative binomial distribution for the

over-dispersed counts

Negative binomial distribution: y ~ Poisson()\) and A ~ Gamma(u, k)
[E(A\) = p|. The probability function of y is

o= 2 o22) ()

* |tis defined as compound distribution (Gamma-Poisson mixture)
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Beta-binomial distribution

e The Beta-binomial distribution assumes that y ~ Binomial(n, p) and
p ~ beta(a, 8). The beta distribution of p has the density function:

f(p;0,8) = g((z);(?)pa_l(l —p)’~!

e Beta distribution

230\ a=p=05 —  Mean and variance of a Beta distribution:
\,‘ Q = , = — a
a 1, =3 — _
2 | \ZZ%ISZ?, 'u_a+’3;
af
St Var = = 1 —

* For Beta-binomial distribution distribution

E(y) =np, Var(y)=nu(l—p)[1+(n—1)p]

where p =1/(a+ S+ 1).




Beta-binomial GLM

e \We assume that

y; ~ Beta-binomial(n;, u;, p)

with the link function g(i;) = X/ 8. E(y;) = n;u;
* As before, we assume that all samples share the same dispersion,
so there is only one unknown dispersion parameter p.
e A common link for Beta-binomial GLM is still the logit link:

logit(u;) = X; B

* Both f and p are unknown but we can estimate using MLE.



