STAT347: Generalized Linear Models
Lecture 12

Today’s topics: Chapters 8
e Quasi-likelihood

e Estimating equations and the Sandwich estimator

1 Quasi-likelihood

The above solution replaces the exponential family distributions with a
more complicated parametric distribution allowing an extra dispersion pa-
rameter in the variance. Another more general solution is to only assume
a mean-variance relationship.

Remind the the score equation for the exponential family distributed data
is:

0B; Z Var(y;) g’ ()

e These score equations only involve E(y;) = p; and Var(y;).

Quasi-likelihood: we replace Var(y;) by some other mean-variance
relationship that we believe can better fit the data.

Typically, the mean-variance relationship can involves another un-
known dispersion parameter.

Here, we DO NOT assume any other aspects of the distribution of y;
besides mean and variance.

Common forms of mean-variance relationship Var(y;) = a(u;, ¢):

e Proportional: a(u;, @) = ¢v*(1;).
— counts: assume a(p;, @) = du;
~ grouped Binary data: a(us, @) = épui(ni — i)/

e For counts we can also assume a(u;, @) = u; +¢pu? as in the Negative-
Binomial distribution

e For grouped Binary data we can also assume a(p;, @) = pi(n; —
i) (1 + (n; — 1)¢) as in the Beta-Binomial distribution

Some related properties:

e The proportional mean-variance relationship is the easiest for the
computation of 8 as ¢ cancels and does not affect solving the score
equations for (.

e Var(f) is affected by ¢ for any of the above mean-variance relation-
ships.
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e Including ¢ helps to get a correct uncertainty quantification of B

How to estimate ¢? As we don’t know the likelihood of the data, we only
use moment conditions.

e When a(u;, ¢) = ¢v*(u;), we can get 3 thus fi; first without knowing
¢. Then define
n . 2
X2 —_ (yl lj”b)
; Pv*(fi;)
We can solve ¢ by solving X? = n — p (we use n — p instead of n to
correct for the degree of freedom in the estimated fi;), which is

n
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e For other forms of a(u, ®), we need to solve ¢ and 8 simultaneously
from equations
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— Elp1;(8,¢)] = 0 and E[p2(5, ¢)]/n — 0. Solutions 3 and ¢ are
called Z-estimators. Under proper regularity conditions, we can

show that both § and ¢ are consistent.

2 Estimating equations and Sandwich esti-
mator
How to estimate the variance of 3 from the quasi-likelihood equations?

And what if we do not even know the true form of the mean-variance
relationship?

e The equations (2) is one type of estimating equations. In general, the
estimating equations for parameters 6 (here 8 = (5, ¢) or 6 = 3) have

the form:
u(f) = Zul(Q) =0

Denote the solution of these equations as 6 and the true 6 as 6.

— Consistency: roughly speaking, when p is small, if F(u(6y)) — 0
when n — oo, then we can have § — 6y (with some additional
conditions).

— Variance of 6. Under consistency, we can estimate the asymp-
totic variance of 6 by first-order Taylor expansion (see later).

e The score equations
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are valid estimating equations (E[u(5y)] = 0) as long as as the link
function is correct. The response y; does not need to follow the as-
sumed exponential family distribution and v*(p;) does not need to be
the correct form of variance.

e Even the simple ). (y; — pi)zi; = 0 are always valid estimating equa-
tions. The problem is that sd(B) may be large if samples have unequal
variances.

Sandwich estimator of the asymptotic variances:

Let’s now calculate the asymptotic variance of 6 for
() =0
By first-order Taylor expansion, we have
0 = u(6) = u(Bo) + (6o) (6 — bo)

Thus, we have R
0 — 0y ~ —u(0) " u(bo)

Roughly speaking, we have

e Law of large numbers:

%u(eo) _ %Zui(eo) S E (711 Zm(%)) =A

e CLT:

Thus R
Var(d) ~ A'VA T /n

In practice, we can estimate A and V by

and

e We use the sample variance to approximate V without knowing the
distribution of the data

e The Sandwich estimator provides an estimate of the variance of B
even when model assumption is violated.

3 Revisit the horseshoe crab data

Please see R notebook Example 7.

Next time: Mixed effect linear models



