
1

STAT347: Generalized Linear Models

Lecture 12

Today’s topics: Chapters 8

• Quasi-likelihood

• Estimating equations and the Sandwich estimator

1 Quasi-likelihood

The above solution replaces the exponential family distributions with a
more complicated parametric distribution allowing an extra dispersion pa-
rameter in the variance. Another more general solution is to only assume
a mean-variance relationship.

Remind the the score equation for the exponential family distributed data
is:

∂L

∂βj
=
∑
i

(yi − µi)xij
Var(yi)

1

g′(µi)
= 0

• These score equations only involve E(yi) = µi and Var(yi).

• Quasi-likelihood: we replace Var(yi) by some other mean-variance
relationship that we believe can better fit the data.

• Typically, the mean-variance relationship can involves another un-
known dispersion parameter.

• Here, we DO NOT assume any other aspects of the distribution of yi
besides mean and variance.

Common forms of mean-variance relationship Var(yi) = a(µi, φ):

• Proportional: a(µi, φ) = φv?(µi).

– counts: assume a(µi, φ) = φµi

– grouped Binary data: a(µi, φ) = φµi(ni − µi)/ni

• For counts we can also assume a(µi, φ) = µi +φµ2
i as in the Negative-

Binomial distribution

• For grouped Binary data we can also assume a(µi, φ) = µi(ni −
µi) (1 + (ni − 1)φ) as in the Beta-Binomial distribution

Some related properties:

• The proportional mean-variance relationship is the easiest for the
computation of β̂ as φ cancels and does not affect solving the score
equations for β.

• Var(β̂) is affected by φ for any of the above mean-variance relation-
ships.
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• Including φ helps to get a correct uncertainty quantification of β̂.

How to estimate φ? As we don’t know the likelihood of the data, we only
use moment conditions.

• When a(µi, φ) = φv?(µi), we can get β̂ thus µ̂i first without knowing
φ. Then define

X2 =

n∑
i=1

(yi − µ̂i)
2

φv?(µ̂i)

We can solve φ by solving X2 = n − p (we use n − p instead of n to
correct for the degree of freedom in the estimated µ̂i), which is

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)
2

v?(µ̂i)

• For other forms of a(µ, φ), we need to solve φ and β simultaneously
from equations

ϕ1j(β, φ) =
∂L

∂βj
=
∑
i

(yi − µi)xij
a(µi, φ)

1

g′(µi)
= 0 (1)

ϕ2(β, φ) =

n∑
i=1

(yi − µi)
2

a(µi, φ)
− (n− p) = 0 (2)

– E[ϕ1j(β, φ)] = 0 and E[ϕ2(β, φ)]/n → 0. Solutions β̂ and φ̂ are
called Z-estimators. Under proper regularity conditions, we can
show that both β̂ and φ̂ are consistent.

2 Estimating equations and Sandwich esti-
mator

How to estimate the variance of β̂ from the quasi-likelihood equations?
And what if we do not even know the true form of the mean-variance
relationship?

• The equations (2) is one type of estimating equations. In general, the
estimating equations for parameters θ (here θ = (β, φ) or θ = β) have
the form:

u(θ) =
∑
i

ui(θ) = 0

Denote the solution of these equations as θ̂ and the true θ as θ0.

– Consistency: roughly speaking, when p is small, if E(u(θ0))→ 0

when n → ∞, then we can have θ̂ → θ0 (with some additional
conditions).

– Variance of θ̂. Under consistency, we can estimate the asymp-
totic variance of θ̂ by first-order Taylor expansion (see later).

• The score equations

u(β) =
∑
i

(yi − µi)xij
v?(µi)

1

g′(µi)
= 0
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are valid estimating equations (E[u(β0)] = 0) as long as as the link
function is correct. The response yi does not need to follow the as-
sumed exponential family distribution and v?(µi) does not need to be
the correct form of variance.

• Even the simple
∑

i(yi−µi)xij = 0 are always valid estimating equa-

tions. The problem is that sd(β̂) may be large if samples have unequal
variances.

Sandwich estimator of the asymptotic variances:

Let’s now calculate the asymptotic variance of θ̂ for

µ(θ̂) = 0

By first-order Taylor expansion, we have

0 = u(θ̂) ≈ u(θ0) + u̇(θ0)(θ̂ − θ0)

Thus, we have
θ̂ − θ0 ≈ −u̇(θ0)−1u(θ0)

Roughly speaking, we have

• Law of large numbers:

1

n
u̇(θ0) =

1

n

n∑
i=1

u̇i(θ0)→ E

(
1

n

n∑
i=1

u̇i(θ0)

)
= A

• CLT:
1√
n
u(θ0) =

1√
n

n∑
i=1

ui(θ0) ≈ N(0, V )

Thus
Var(θ̂) ≈ A−1V A−T /n

In practice, we can estimate A and V by

Â =
1

n

n∑
i=1

u̇i(θ̂)

and

V̂ =
1

n

∑
i

ui(θ̂)ui(θ̂)
T

• We use the sample variance to approximate V without knowing the
distribution of the data

• The Sandwich estimator provides an estimate of the variance of β̂
even when model assumption is violated.

3 Revisit the horseshoe crab data

Please see R notebook Example 7.

Next time: Mixed effect linear models


