STAT347: Generalized Linear Models
Lecture 15

Today’s topics: Chapters 9.4, 9.5, 9.7
e GLMM: generalized linear mixed effect model

— Binomial response: logistic-normal models

— Poisson GLMM

— Marginal likelihood MLE for GLMM: Gauss-Hermite Quadra-
ture (Chapters 9.5.1, 9.5.2)

e Example: modeling correlated survey responses

1 Generalized linear mixed effect models

For LMM, the form is
Yis = X8+ Ziui + €3

with u; and €;; random. With the typical assumption that E(u;) = E(e;s) =
0, we would also have marginally

However, for GLMM, the model is
9B (yis | wi)] = X[58 + Zus

when the link function g is non-linear, marginally after integrating out the
randomness in p; we would have

9lE(yis)] # X,
In GLMM with non-linear link functions, if u; does exist but we ignore
it, then we will not only have over-dispersion, we will also have a biased
estimate of .
1.1 Binomial response
e Logistic-normal model:
logit[P(yis = 1 | us)] = XLB + ZLu;

— Item response models: y;; the yes/no (correct/incorrect) re-
sponse of subject ¢ on question j

logit[P(yij | ui)] = Bo + Bj + u;
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e latent variable threshold model with random effects:
Remember for binary GLM, we can also write down the link as the
form
P(y;s = 1) = F(X;,8)
With random effects, we can extend to the assumption:

Plyis = 1| w) = F(XZB + ZLu;)

In other words, from the late variable threshold modeling prospective,
we assume there is a latent y, where

y:’(s = Xsz/B + Z;z;uz + €is
where ¢, are i.i.d. following some distribution (normal, logistic, ...)
and we have
1 ifyr>=0
Yis =
0 else

Here are some properties:

— Conditional independence:

P(yin = a1, -, Yid, = aq, | wi = ux) = P(ysn = a1 | uy = ) - - P(Yia, = aq, | ui = uy)

— Marginal correlation:
cov(Yis, Yix) = Elcov(yis, Yir | ui)] + cov[E(yis | i), E(yir | wi)]
=0+ cov[F(XLB + ZLw;), F(XLB + Z} )]

where F' is the cdf of —¢;5. If Z;5 = 1 (the random intercept
model), then cov(y;s, yix) > 0.

Marginally,
E(yis) = P(yis = 1) # F(X.)

After some calculations to integrate out the random variable u; (see page
308), we have

e For the probit link random-intercept model Ply;s = 1 | u;] = ®(XZ 5+
ui),

P(yis =1) = /P(yis =1]u; =u)f(u)du= /P(Q‘ < u+ XisB) f(u)du
where ¢; ~ N(0,1) and f(u) is the density of w;. Since ¢; — u; ~
N(0,1+ 02), we have P(y;s = 1) = ®(X;s3/+1/1 + 02), so

Xr

V1402

9(P(yis =1)) =
e For the logistic-normal model:

T
9(Pyiz = 1)) v —is

VG +02/c?
where ¢ = 1.7

e Why does the g in the random effect model typically larger than the
marginal relationship between z and y? Figure 9.2 (compare with
linear regression)
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1.2 Poisson GLMM

log[E(yis | wi)] = X8+ Zius

Equivalently,
E T s T
[Yis | us] = eZistieXish

For the random-intercept model where Z;s = 1 and u; ~ N(0,02), we have
E(yis) = X6Pros?

The coefficients 8 does not change except for the intercept.

1.3 Fitting GLMM with Gauss-Hermite Quadrature
methods

Fitting GLMM is more complicated than fitting LMM as the marginal
distribution of the observations {y;s} do not have a closed form. You may
learn other methods like MCMC and EM in the future. Here we very briefly
discuss how to approximate the marginal likelihood numerically.

The marginal likelihood

1B, Buiy) = F(y: 5.50) = / S |, B) (s )

This typically do not have a closed form

Gauss-Hermite Quadrature methods: approximate the integral by a weighted
sum

/h(u)exp(—uQ)du ~ Z crh(sk)
k=1

e the tabulated weights {c;} and quadrature points {sj} are the roots
of Hermite polynomials.

e The approximation is more more accurate with larger q. For more
details, read chapter 9.5.2.

e The approximated likelihood is maximized with optimization algo-
rithms such as Newton’s method

Laplace approximation: the marginal density of our data has the form

L) gy o | o (u0)+ 31 (o) (u—0)? gy — Ghluo) [ 2T
|1 (uo)

Here uy is the global maximum of I(u) satisfying {'(ug) = 0. Laplace ap-
proximation can be used when u is multi-dimensional.

2 Example: modeling correlated survey re-
sponses (Chapter 9.7)

See R Data Example 9.



