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STAT347: Generalized Linear Models

Lecture 15

Today’s topics: Chapters 9.4, 9.5, 9.7

• GLMM: generalized linear mixed effect model

– Binomial response: logistic-normal models

– Poisson GLMM

– Marginal likelihood MLE for GLMM: Gauss-Hermite Quadra-
ture (Chapters 9.5.1, 9.5.2)

• Example: modeling correlated survey responses

1 Generalized linear mixed effect models

For LMM, the form is

yis = XT
isβ + ZTisui + εis

with ui and εis random. With the typical assumption that E(ui) = E(εis) =
0, we would also have marginally

E(yis) = XT
isβ

However, for GLMM, the model is

g[E(yis | ui)] = XT
isβ + ZTisui

when the link function g is non-linear, marginally after integrating out the
randomness in µi we would have

g[E(yis)] 6= XT
isβ

In GLMM with non-linear link functions, if ui does exist but we ignore
it, then we will not only have over-dispersion, we will also have a biased
estimate of β.

1.1 Binomial response

• Logistic-normal model:

logit[P (yis = 1 | ui)] = XT
isβ + ZTisui

– Item response models: yij the yes/no (correct/incorrect) re-
sponse of subject i on question j

logit[P (yij | ui)] = β0 + βj + ui
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• latent variable threshold model with random effects:

Remember for binary GLM, we can also write down the link as the
form

P (yis = 1) = F (XT
isβ)

With random effects, we can extend to the assumption:

P (yis = 1 | ui) = F (XT
isβ + ZTisui)

In other words, from the late variable threshold modeling prospective,
we assume there is a latent y?is where

y?is = XT
isβ + ZTisui + εis

where εis are i.i.d. following some distribution (normal, logistic, ...)
and we have

yis =

{
1 if y?is >= 0

0 else

Here are some properties:

– Conditional independence:

P (yi1 = a1, · · · , yidi = adi | ui = u?) = P (yi1 = a1 | ui = u?) · · ·P (yidi = adi | ui = u?)

– Marginal correlation:

cov(yis, yik) = E[cov(yis, yik | ui)] + cov[E(yis | ui), E(yik | ui)]
= 0 + cov[F (XT

isβ + ZTisui), F (XT
ikβ + ZTikui)]

where F is the cdf of −εis. If Zis = 1 (the random intercept
model), then cov(yis, yik) > 0.

Marginally,
E(yis) = P (yis = 1) 6= F (XT

isβ)

After some calculations to integrate out the random variable ui (see page
308), we have

• For the probit link random-intercept model P [yis = 1 | ui] = Φ(XT
isβ+

ui),

P (yis = 1) =

∫
P (yis = 1 | ui = u)f(u)du =

∫
P (εi ≤ u+Xisβ)f(u)du

where εi ∼ N(0, 1) and f(u) is the density of ui. Since εi − ui ∼
N(0, 1 + σ2

u), we have P (yis = 1) = Φ(Xisβ/
√

1 + σ2
u), so

g(P (yis = 1)) =
XT
isβ√

1 + σ2
u

• For the logistic-normal model:

g(P (yis = 1)) ≈ XT
isβ√

1 + σ2
u/c

2

where c ≈ 1.7

• Why does the β in the random effect model typically larger than the
marginal relationship between x and y? Figure 9.2 (compare with
linear regression)
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1.2 Poisson GLMM

log[E(yis | ui)] = XT
isβ + ZTisui

Equivalently,

E[yis | ui] = eZ
T
isuieX

T
isβ

For the random-intercept model where Zis = 1 and ui ∼ N(0, σ2
u), we have

E(yis) = eX
T
isβ+σ

2
u/2

The coefficients β does not change except for the intercept.

1.3 Fitting GLMM with Gauss-Hermite Quadrature
methods

Fitting GLMM is more complicated than fitting LMM as the marginal
distribution of the observations {yis} do not have a closed form. You may
learn other methods like MCMC and EM in the future. Here we very briefly
discuss how to approximate the marginal likelihood numerically.

The marginal likelihood

l(β,Σu; y) = f(y;β,Σu) =

∫
f(y | u, β)f(u; Σu)du

This typically do not have a closed form

Gauss-Hermite Quadrature methods: approximate the integral by a weighted
sum ∫

h(u)exp(−u2)du ≈
q∑

k=1

ckh(sk)

• the tabulated weights {ck} and quadrature points {sk} are the roots
of Hermite polynomials.

• The approximation is more more accurate with larger q. For more
details, read chapter 9.5.2.

• The approximated likelihood is maximized with optimization algo-
rithms such as Newton’s method

Laplace approximation: the marginal density of our data has the form∫
el(u)du ≈

∫
el(u0)+

1
2 l

′′(u0)(u−u0)
2

du = el(u0)

√
2π

|l′′(u0)|

Here u0 is the global maximum of l(u) satisfying l′(u0) = 0. Laplace ap-
proximation can be used when u is multi-dimensional.

2 Example: modeling correlated survey re-
sponses (Chapter 9.7)

See R Data Example 9.


