STAT347: Generalized Linear Models Lecture 15

Winter, 2023 Jingshu Wang

Today's topics:

- GLMM: generalized linear mixed effect model
 - Binomial response: logistic-normal models
 - Poisson GLMM
 - Marginal likelihood MLE for GLMM: Gauss-Hermite Quadrature
- Example: modeling correlated survey responses

LMM V.S. GLMM

For LMM, the form is

$$y_{is} = X_{is}^T \beta + Z_{is}^T u_i + \epsilon_{is}$$

with u_i and ϵ_{is} random. With the typical assumption that $E(u_i) = E(\epsilon_{is}) = 0$, we would also have marginally

$$E(y_{is}) = X_{is}^T \beta$$

If we ignore the random effects but use a regular linear model

- Our estimates for β will still be consistent
- We underestimate the uncertainty in $\hat{\beta}$

LMM V.S. GLMM

However, for GLMM, the model is

$$g[E(y_{is} \mid u_i)] = X_{is}^T \beta + Z_{is}^T u_i$$

when the link function g is non-linear, marginally after integrating out the randomness in μ_i we would have

$$g[E(y_{is})] \neq X_{is}^T \beta$$

If we ignore the random effects but use a regular GLM model

- Our estimates for β will be biased
- The uncertainty in $\hat{\beta}$ will also be wrongly evaluated (likely under-estimated)

GLMM for binomial response

Logistic-normal model:

$$logit[P(y_{is} = 1 \mid u_i)] = X_{is}^T \beta + Z_{is}^T u_i$$

where $u_i \sim N(0, \Sigma_u)$ and are independent

• Example: item-response models

Item response models: y_{ij} the yes/no (correct/incorrect) response of subject i on question j

 $logit[P(y_{ij} \mid u_i)] = \beta_0 + \beta_j + u_i$

Latent variable threshold model with random effects

We can view GLMM for binary responses as latent variable threshold model with random effects

We assume that

$$P(y_{is} = 1 \mid u_i) = F(X_{is}^T \beta + Z_{is}^T u_i)$$

we assume there is a latent y_{is}^{\star} where

$$y_{is}^{\star} = X_{is}^T \beta + Z_{is}^T u_i + \epsilon_{is}$$

where ϵ_{is} are i.i.d. following some distribution (normal, logistic, ...) and we have

$$y_{is} = \begin{cases} 1 & \text{if } y_{is}^{\star} >= 0\\ 0 & \text{else} \end{cases}$$

Some properties

• Conditional independence

 $P(y_{i1} = a_1, \cdots, y_{id_i} = a_{d_i} \mid u_i = u_{\star}) = P(y_{i1} = a_1 \mid u_i = u_{\star}) \cdots P(y_{id_i} = a_{d_i} \mid u_i = u_{\star})$

• Marginal correlation

$$cov(y_{is}, y_{ik}) = E[cov(y_{is}, y_{ik} | u_i)] + cov[E(y_{is} | u_i), E(y_{ik} | u_i)]$$

= 0 + cov[F(X_{is}^T\beta + Z_{is}^Tu_i), F(X_{ik}^T\beta + Z_{ik}^Tu_i)]

• For random intercept Binary GLMM, the correlation between two responses within the same group is still positive (same as LMM)

 $\operatorname{cov}(y_{is}, y_{ik}) > 0$

Bias in \hat{eta} is the Binary GLMM is true but we use GLM

• Generally

$$\mathbb{E}(y_{is}) = P(y_{is} = 1) \neq F(X_{is}^T\beta)$$

• For some models, especially, the random intercept Binary GLMM, we can find that the marginal model (ignoring the random effects) is roughly still a GLM, but with true coefficients shrinkage towards 0

Probit link random intercept model

$$P[y_{is} = 1 \mid u_i] = \Phi(X_{is}^T \beta + u_i)$$

• The marginal probability

$$P(y_{is} = 1) = \int P(y_{is} = 1 \mid u_i = u) f(u) du = \int P(\epsilon_i \le u + X_{is}\beta) f(u) du$$

where $\epsilon_i \sim N(0,1)$ and f(u) is the density of u_i . Since $\epsilon_i - u_i \sim N(0,1+\sigma_u^2)$, we have $P(y_{is}=1) = \Phi(X_{is}\beta/\sqrt{1+\sigma_u^2})$, so

$$g(P(y_{is} = 1)) = \frac{X_{is}^T \beta}{\sqrt{1 + \sigma_u^2}}$$

• This indicates that the marginal probabilities follows a

Probit link random intercept model

$$g(P(y_{is} = 1)) = \frac{X_{is}^T \beta}{\sqrt{1 + \sigma_u^2}}$$

 This indicates that the marginal probabilities still follow a probit link, but with

$$\beta^{\text{marginal}} = \frac{\beta}{\sqrt{1 + \sigma_u^2}}$$

- If we ignore the random effects but fit a probit GLM
- Our estimates for β will be biased by $1/\sqrt{1 + \sigma_u^2}$
- We still underestimate the uncertainty in $\hat{\beta}^{\text{marginal}}$ (as we ignore the fact that samples are correlated)

Marginal GLM for Logistic–normal model

• We have a similar approximation for the logistic-normal model if we only have random intercept

$$g(P(y_{is}=1)) \approx \frac{X_{is}^T \beta}{\sqrt{1 + \sigma_u^2/c^2}}$$

where $c \approx 1.7$

Marginal GLM properties

• Why does the β in the random effect model typically larger than the coefficient β^{marginal} in the corresponding marginal GLM?

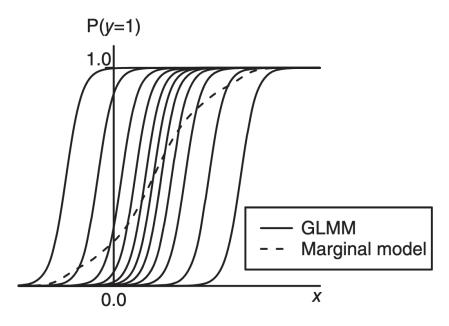


Figure 9.2 Logistic random-intercept GLMM, showing its subject-specific curves and the population-averaged marginal curve obtained at each x by averaging the subject-specific probabilities.

Poisson GLMM

$$\log[E(y_{is} \mid u_i)] = X_{is}^T \beta + Z_{is}^T u_i$$

Equivalently,

$$E[y_{is} \mid u_i] = e^{Z_{is}^T u_i} e^{X_{is}^T \beta}$$

For the random-intercept model where $Z_{is} = 1$ and $u_i \sim N(0, \sigma_u^2)$, we have

$$E(y_{is}) = e^{X_{is}^T \beta + \sigma_u^2/2}$$

The coefficients β does not change except for the intercept.

Fitting GLMM

- Fitting GLMM is more challenging than fitting LMM as the marginal distributions of the responses y_{is} typically do not have closed forms
- Typical methods
 - Full Bayes approach MCMC
 - EM algorithm
 - Approximate the marginal likelihood numerically

The marginal likelihood

$$l(\beta, \Sigma_u; y) = f(y; \beta, \Sigma_u) = \int f(y \mid u, \beta) f(u; \Sigma_u) du$$

Gauss-Hermite Quadrature

Gauss-Hermite Quadrature methods: approximate the integral by a weighted sum $\since{2}$

$$\int h(u) \exp(-u^2) du \approx \sum_{k=1}^q c_k h(s_k)$$

- the tabulated weights $\{c_k\}$ and quadrature points $\{s_k\}$ are the roots of Hermite polynomials.
- The approximation is more more accurate with larger q. For more details, read chapter 9.5.2.
- The approximated likelihood is maximized with optimization algorithms such as Newton's method

Laplace approximation

Laplace approximation: the marginal density of our data has the form

$$\int e^{l(u)} du \approx \int e^{l(u_0) + \frac{1}{2}l''(u_0)(u - u_0)^2} du = e^{l(u_0)} \sqrt{\frac{2\pi}{|l''(u_0)|}}$$

Here u_0 is the global maximum of l(u) satisfying $l'(u_0) = 0$. Laplace approximation can be used when u is multi-dimensional.

Example: modeling correlated survey responses

• Check Example9 R notebook