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Today’s topics:

e GLMM: generalized linear mixed effect model

* Binomial response: logistic-normal models
* Poisson GLMM
* Marginal likelihood MLE for GLMM: Gauss-Hermite Quadrature

* Example: modeling correlated survey responses



LMM V.S, GLMM

For LMM, the form is
Yis = ij;ﬁ + qu;uz + €55

with u; and €;5 random. With the typical assumption that E(u;) = E(e;5) =
0, we would also have marginally

E(yzs) — XZ;

If we ignore the random effects but use a regular linear model
* Our estimates for § will still be consistent
* We underestimate the uncertainty in 5



LMM V.S, GLMM

However, for GLMM, the model is
9lE(yis | wi)] = XioB + Ziju,

when the link function g is non-linear, marginally after integrating out the
randomness in u; we would have

9lE(yis)] # X5

If we ignore the random effects but use a regular GLM model
* OQur estimates for § will be biased
 The uncertainty in ,BA’ will also be wrongly evaluated (likely under-estimated)



GLMM for binomial response

Logistic-normal model:
logit[P(yis = 1 | u3)] = X188 + Z1u;

where u;~N (0, X,,) and are independent

 Example: item-response models

Item response models: y;; the yes/no (correct/incorrect) re-
sponse of subject 7 on question j

logit[P(yi; | ui)] = Bo + Bj + wi



Latent variable threshold model with random effects

We can view GLMM for binary responses as latent variable threshold
model with random effects

We assume that
P(yis = 1| w) = F(X.LB+ ZLw)

we assume there is a latent y, where
* T T
Yis — Xzsﬁ + Zz’sui + €is

where €;5 are i.i.d. following some distribution (normal, logistic, ...)

and we have
1 iy >=0
Yis =

0 else



Some properties

 Conditional independence

P(yii =01, ,Yid, = 0q, | s = usx) = P(y;1 = a1 | s = uy) - - - P(Yiq, = g, | us = uy)

 Marginal correlation

cov(Yis, Yik) = E|cov(Yss, Yik | wi)| + cov[E(yis | ), E(yir | ©i)]
=0+ cov[F(XLB+ ZLu;), F(XLB + Z}Eu,)]

 Forrandom intercept Binary GLMM, the correlation between two
responses within the same group is still positive (same as LMM)

cov(Yis, Yix) > 0



Bias in 8 is the Binary GLMM is true but we use GLM

 Generally

E(yis) = P(yis = 1) # F(X1B)

 For some models, especially, the random intercept Binary GLMM, we
can find that the marginal model (ignoring the random effects) is
roughly still a GLM, but with true coefficients shrinkage towards O



Probit link random intercept model
Plyis = 1| u;] = ®X5B + uy)
 The marginal probability

P(yis =1) = /P(yiS =1]|u; =u)f(u)du = /P(ei <u+ X;s0)f(u)du

where ¢; ~ N(0,1) and f(u) is the density of u;. Since €¢; — u; ~
N(0,1+ c2), we have P(y;s = 1) = ®(X;58/+/1 + 02), so
XsP

V1+o0o2

* This indicates that the marginal probabilities follows a

g(P(yis =1)) =



Probit link random intercept model

T
Xz's

V1402

 This indicates that the marginal probabilities still follow a probit link,
but with

g(P(yis = 1)) =

'Bmarginal — 'B
J1+ 02

* |f weignore the random effects but fit a probit GLM

* QOur estimates for  will be biased by 1/\/1 + o2

*  We still underestimate the uncertainty in ™82l (35 we ignore the
fact that samples are correlated)




Marginal GLM for Logistic—-normal model

 We have a similar approximation for the logistic-normal model if we
only have random intercept

xXT
V1+oZ/c?

g(P(yis = 1)) »

where c =~ 1.7



Marginal GLM properties

* Why does the (§ in the random effect model typically larger than
the coefficient f™ar8Mal i the corresponding marginal GLM?

P(y=1)
1.0

— GLMM
- - Marginal model

0.0 X

Figure 9.2 Logistic random-intercept GLMM, showing its subject-specific curves and the
population-averaged marginal curve obtained at each x by averaging the subject-specific prob-
abilities.



Poisson GLMM

log[E(yis | ui)] = XisB + Zisu;

Equivalently,

Zru; X1

Elys | u;] = e“istie™is

For the random-intercept model where Z;; = 1 and u; ~ N(0, 02), we have
E(y;s) = eXibtou/?

The coefficients 8 does not change except for the intercept.



Fitting GLMM

* Fitting GLMM is more challenging than fitting LMM as the marginal
distributions of the responses y;. typically do not have closed forms

 Typical methods
e Full Bayes approach MCMC
e EM algorithm
 Approximate the marginal likelihood numerically

The marginal likelihood

1B, Su;y) = f(y; 6,5 /fylu S, du



Gauss-Hermite Quadrature

Gauss-Hermite Quadrature methods: approximate the integral by a weighted
sum

/h(u)exp(—uz)du ~ Z cxh(sk)
k=1

e the tabulated weights {cx} and quadrature points {sx} are the roots
of Hermite polynomials.

e The approximation is more more accurate with larger q. For more
details, read chapter 9.5.2.

e The approximated likelihood is maximized with optimization algo-
rithms such as Newton’s method



Laplace approximation

Laplace approximation: the marginal density of our data has the form

W dy ~ [ el@o)+31" (wo)(u—u0)? g, — pl(uo) 2m
1" (uo)|

Here ug is the global maximum of [(u) satisfying I’(ug) = 0. Laplace ap-
proximation can be used when u is multi-dimensional.




Example: modeling correlated survey responses

 Check Example9 R notebook



