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Today’s topics:

« GLM computation

* Binary / Binomial data model
« Data input
 Link functions
R example



GLM computation

* Only discuss the case of a(¢) = 1 to simplify notation
* If a(¢) is not a constant, one can get B from the score equations first, and
then estimate ¢ from MLE with [? plugged in

Score equation: .
L(B)=X"DV~'(y—p) =0
where

L(B) =) [yifi — b(6;)]

* Newton’s method
* Fisher scoring method
* lteratively reweighted least squares (IRLS): equivalent to Fisher scoring



Newton’s method

Second-order approximation of L(()
L(B) ~ L(BY) + L(B“)"(8 - B)) + %(ﬁ - BITLBY) (B - )

at tth iteration. If L(8*)) < 0, then maximizing the second-order approxi-
mation is equivalent to solving

L(B) = L(B™) + L(B) (B — D) =0

We have
B — 0 _ £(50)-1 (50



Newton’s method

* Newton’s method is a general algorithm for optimizing twice-differentiable
functions.
* Generally, it converges to the global maximum if L(f) is strongly concave
* If g(-) is the canonical link, then L(f) is concave in 3

1
a(4)?

* If g(-)is agenerallink, then L(f) is NOT guaranteed to be concave in

_ﬁ(ﬁ(t)) — XTw® x —

XTv®OX = _E (jjw(t))) )

« If —L(B®) is not non-negative, then step t does not maximize the
qguadratic approximation and Newton’s method may not converge.



Fisher scoring method

* Inlecture 2, we showed that —E(i(ﬁ)) > 0 forany f.

« Instead of using the Hessian L(B®) itself in the second order
approximation, we use its expectation

Jb — | (L(B(t))) — _xXxTw® x

Each iteration becomes:

gD = g0 _ ( J<t>)‘1 L(3®)

* For the canonical link, Fisher scoring = Newton’s method
* For a general link, Fisher scoring works better in practice



iteratively reweighted least squares

 We can make a connection between the optimization for GLM and weighted least squares estimation.

Recall the score equation:
L(B)=X"DV 'y —p) =0

where V' = diag(Var(y1),- - - , Var(y,)) and D = diag (¢’ (¢1), - - - ,g’(,un))_l,
Yy= (yla"' ,yn) and n = (:U'l"" ,,U,n).

Also in lecture 2, we used the notation n; = X8 = g(u;). Thus, D =
diag (% %). We also defined the diagnoal matrix W = D?V 1.

on? > Onn
Thus,

L(B)=X"DV ' (y—p)=X"WD ' (y — p)
We can make a first order approximation of u
p=p®+DW(n—-nM)

then .
L(B) ~ XTWW () — X p)

where i
:® = x50 4 (D(w) (y — u®)

is a linear approximation of 1 at the tth iteration.



iteratively reweighted least squares (IRLS)

* Atthe t+1 th iteration, we solve the “approximated score equation”:
XTw® () — x8) =0

which can be considered as a weighted linear regression with observations z
weight w; for each sample i.

(t)

i and

* |RLS is equivalent to Fisher scoring. The tth step of Fisher scoring satisfy
(XTW(t)X)B(tH) = XTw® x50 4 XTD(t)(V(t))—l(y _ ,u(t))
—_ xTw® [Xﬁm + (DY L(y — u(t))]
— XTw® ()

« Weight matrix W () ~ Var (z(t))_1



Binary / binomial data model

If the observation y; is binomial
y; ~ Binomial(n;, p;)

and probability function:

o= (- (2) () 0

If n; = 1, then y; is a 0/1 binary data point (follows a Bernoulli distribu-
tion).




Data input for binary model

If X; are categorical variables, then we may have samples with the same X; and we can
group them together

* ungrouped data: each n; = 1 and some samples have the same X;, thus they share

the same p;
* agrouped sample y;, for group k where all observations in the group share the same

X;
* Define nj as the number of binary observations
* The grouped response for group k is

Jk = Y  vi ~ Binomial(ny, px)
1€l
* The grouped data follows the Binomial distribution because we assume that the
samples are independent within each group



Likelihood for grouped and ungrouped data

e Let N =), ni The likelihood for the ungrouped data is:

f(y1,92,-+ ,yn) HP[ —pi) Y
= Hpk — Dk) nk_gk
k

The likelihood for the corresponding grouped data is:

ey ~ m o
f(y17y27'°'7yK):H( k)pk (1_pk) k—Yk
o \Yk
* The likelihood is not the same between the grouped data and

ungrouped data. However, the log-likelihood function only differs by a
constant, thus the GLM solution does not change.



Link function for binary / binomial GLM

The expectation of each sample is E(y;) = n;p; where n; is a known con-
stant. Thus we define the link function as a function of p;

g(p;) = X;'B

Equivalently,
pi=g ' (X{B) €[0,1]

* If g is a one-to-one mapping and continuous function, then g~1 should
be monotone.
e one natural choice of g~1 is to make it as a cdf of some distribution.



Latent variable threshold models

* Denote F(z) = g~1(z) as some cdf function

. Let g “RF F(-)

e Then
pi=F(X/B) =Ple; < X B)=P(X/B— € >=0)

e This is called a latent variable threshold models and X/ 5 — ¢; are
the “latent variables”

* |t does not make any essential modeling difference choosing the
cutoff to be 0 or any other value t



Latent variable threshold models

X

Figure 5.1 Threshold latent variable model, for which we observe y, = 1 when underlying
latent variable y¥ > 7.



The probit link

e The probit link: F'(z) is the cdf of a standard Gaussian distribution
pi=P(X/B—€¢>=0)=P(X/B+e >=0)

where ¢; ~ N(0,1). Let the hidden variable be y* = X! 8 + ¢;, then
it goes to the definition of the probit link that some of you may be
more familiar with:

¢

1 ifyr>=0

Y; =
\O else




The logit link

e The logit link: F'(z) is the cdf of a standard logistic distribution

ez

- 1+ e?

F(2)

— The link function is called the logit link: g¢(p;) = logit(p;) =

o (1257

— The logit link is the canonical link of the Binomial distribution



The identity link

e The identity link: F(z) is the cdf of a uniform [0, 1] distribution and
pi = X; B

— The identity link corresponds to a uniform cdf only when X! 8 €
0, 1] for all samples.

— Because of the range issue, when using R to solve a binomial
GLM with identity link, there can often be numerical problems

(such as the error we saw in the earlier data example in Section
1.4, Data Example 1).



The log-log link

* All previous links assume a symmetric €; around 0
* A corresponding restriction is that the response curve is symmetric at 0.5
* We should use some other link functions if this assumption is severely
violated

e The log-log link: F(z) is the cdf of a standard double-exponential
distribution (Gumbel distribution)

F(z)=e¢ "
— The link function is called the log-log link:

g(p;) = —log|—log(p;)] = Xz'Tﬁ

* With the log-log link, p; approaches 0 sharply but approaches 1 slowly



The complementary log-log link

* With a complementary log-log link, p; approaches 1 sharply but approaches 0
slowly

g(p;) =log[—log(p;)] = X! B

A/ﬂ<0

,B>O\

0 —
X

Figure 5.4 GLM for binary data using complementary log—log link function.



R data example for binary / binomial GLM (part )

* Check Example3 1 R notebook



