STAT347: Generalized Linear Models

Lecture 6

Winter, 2023
Jingshu Wang



Today’s topics:

* Some applications of Binary GLM

« Binary GLM inference

« Fitting logistic regression and the infinite estimates
« Binary GLM example (part Il)



2 X 2 table

When Both the X; and y; are binary, the grouped data can be represented
by a 2 x 2 table.

Number of grouped samples: 2.

Number of total ungrouped observations: N = nj + ng (Table 5.2 of
the Agresti book)

Assume that (X;,y;) are i.i.d. Odds ratio (OR) for the response
variable Y':

PY=1|X=1)/PY =0]|X=1)

OR:]P’(Y:1|X=O)/]P’(Y:O|X=O)

Interpretation of the coefficient 3; in the binary GLM with logit link:

logit(p;) = Bo + B1X;
efr = OR

Event
Yes No
Yes a b
Exposure
P No G d




Prospective V.S. retrospective design

 We want to know the effect of a risk factor (say smoking) on an outcome (say
lung cancer)

* Prospective design: randomly select smokers and non-smokers from the
population and observe whether they will develop cancer in the future.
* Wecancompare E(Y = 1|X =1)with E(Y =1|X =0)
* Drawbacks: the study takes a long time; lung cancer is a rare disease, may
observe very few cancer samples.

* Retrospective design (case-control study): We randomly select some samples
from patients who develop cancer and some samples from healthy controls.
Then, we check whether the person has been a smoker or not.

* Onlycompare E(X =1|Y = 1) with[E(X =1|Y = 0)
* The study takes a shorter time, and we can obtain enough cancer cases.



Case-control study

Why is the case-control study popular?

OR |+ _PY=1|X=1X= a:)/IP’(Y:O|X=1,):(=a:)
< P(Y=1|X=0,X=2)/P(Y=0|X=0,X =xz)
PX=1|Y=1,X=2)/P(X=0|Y=1,X=2)
CP(X=1|Y=0,X=2)/P(X=0|Y=0X =2)

Thus, we can study estimate the odds ratio of the risk factor from case-
control studies.

Thus, building the logistic regression using case-control study samples is
the same as building the model using prospective samples:

=OR |;z_,



Classification

Table 5.1 A Classification Table

Prediction y

1

Cell counts in such tables yield estimates of sensitivity =
Py =1|y=1)and specificity =PH =0 | y =0).

* Sensitivity (recall, true positive rate, tpr): P(y = 1|y = 1)
 Specificity: P(y =0 ]y =0)
* False positive rate (fpr): 1 — specificity=P(y = 1|y =0)



ROC curve

P(Y=1ly=1)

Good

Poor

P(y = 1ly =0)

Figure 5.2 ROC curves for a binary GLM having good predictive power and for a binary
GLM having poor predictive power.



Score equation in logistic regression

For logistic regression, as the logit link is the canonical link, the score
equation is:

oL nz-eX;FB
8_,Bj = Z(yi — NiP;i)Tij = Z (yz' T1x exgpﬁ) Tij =0

) )

We have derived that as n — oo
Var(8) — (XTWX) ™!

where W = D?V ! is a diagonal matrix. For logistic regression where the
logit link is the canonical link, we have W =V so

T 4

Wi = nipi(1 — ps), Wi =n; 0+ GX,-TB)z




Residual deviance is different for grouped and
ungroup data

— ZD(yz,nzﬁz)
= -2 log [£(y 6:)/ £ (43,6, ]

[ P — )™ Y
= =2 1 2
Z e | (ya/ma)vi(1 — yz’/ni)”"—yi]

:22%10%”% +22( — i) log - Y

— N;Pi

* For the ungrouped data, each observation is y;
* The saturated model is p; = y; for each individual sample
* For the grouped data each observation is y,
* The saturated model is p;, = ¥, for each group (so that p; for each
individual sample in the saturated model is y,, instead of y; )



Residual deviance for grouped data

* The group level data can be presented by a K X 2 count table, where each
row is a group, and the two columns store the number of success Yy and the
number of failure n;,, — ¥y, respectively in each cell.

* Residual deviance for the group data

G*=D,(y,p) = QZ% log
k

~

k . Nk — Yk
o +2) (g — k) log 4
k

NkPk Nk — NkPk

observed
= 2 b dx1
| chguso served X og( serv )

* When the number of groups K is fixed while the total samples size N =
Y.k Nk is large, then the residual deviance is the likelihood ratio satisfying

G2 — D-l-(ya :a’) £> X%(—p



Goodness-of-fit test of the fitted model

e Residual deviance for goodness of fit

G2 = D-l—(ya:a) £> X%{—p

* Pearson’s statistics for goodness of fit

2
Y2 _ Z (observed fitted)

2K cells fitted

— Z (niTr — ’nkpk) n Z [(ne — Yx) — (ng — nkﬁk)P

NPk - ng — NkPk

yk — nkpk
- Y

~ nipr(l — Pr)




Comparison between G4 and X?

* X% =3ye;
sum square of Pearson residuals of grouped data. X2 in general converges to
)(,%_p more quickly, so it works better than G for N not too large.

+ G? =Y, dj
sum square of deviance residuals of grouped data. G gives more reliable p-
values than X? when some cells have small expected counts (< 5).



Binary GLM computation

For logistic regression, Newton’s method = Fisher scoring = IRLS.
For IRLS, the tth iteration is

XTw® () - XB) =0

where
A0 = X789 + (DP) ™ (i — u?)
= log (1 pg”@)) 4 yv(it)—(lnipgtzt))
—D; nip; —D;
and

Wi =V = nipl? (1 - pi?)



Infinite parameter estimates in logistic regression

> x <- ¢(1,2,3,4,5,6); vy <-¢(1,1,1,0,0,0) # complete separation
> fit <- glm(y ~ x, family = binomial (link = logit))

> summary (fit)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 165.32 407521.43 0 1 # x estimate is
X -47.23  115264.41 0 1 # actually -infinity
Number of Fisher Scoring iterations: 25 # unusually large

> logLik (fit)
*log Lik.’ -1.107576e-10 (df=2) # maximized log-likelihood = 0

Or sometimes one may see the following warning message:

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred



Perfect (complete) separation

™9 O

There exists [ such that if
X!Bs > 0theny; =1 }
otherwise y; = 0.

1 2 3 4 5 6
X

Figure 5.3 Complete separation of explanatory variable values, such as y = 1 when x < 3.5
and y = 0 when x > 3.5, causes an infinite ML effect estimate.

We proof that the MLE for 3 does not exist. Let n; = kX 3,.
When k£ — oo, then

P R XTR:

ek X Bs 1 if XI'B8s > 0, or equivalently y; =1
0 else

Thus, g—é’ — 0 if k& — oo so the solution of the score equation is
infinite. In other words, the MLE does not exist.



Quasi-complete separation

There exists 55 such that if

X!'Bs > 0theny; =1,
Xl-T,BS < 0theny; =0,

Xl-T,BS=Othenyi=Oor1

We can also show that the MLE for 8 does not exist (Albert and
Anderson, Biometrika 1984). Any value B can be decomposed as
B = Bs +~. Denote By = kBs +v Let n; = kX! Bs + X}v. When

k — oo, then

kX Bot+X T

Di =

1 4 ek XTBsAXTy

(1 if XT8, >0

0 if XI'8, <0
xT~ .

\ 1;;?7 if XI'Bs=0

This tells us that for any 8, we can find 8, with large enough k so
that the log-likelihood L(Bx) > L(B), so the log-likelihood function
L(-) does not have a finite maximum point. In other words, the MLE

does not exist.



R data example for binary / binomial GLM (part I)

* Check Example3_ 2 R notebook



