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STAT347: Generalized Linear Models

Lecture 9

Today’s topics: Chapters 7.1 and 7.2

• Poisson loglinear model

• Poisson modeling for contingency tables

In many applications, the response variables are counts. Some examples
include:

• Our example in Lecture 1: the number of male satellite for female
horseshoe crabs

• Number of views for a Youtube video

• Number of mRNA copies measured for each gene in RNA sequencing
experiments

Why not using a linear model?

• The response Y typically have a wide range

• Unequal variances

1 Poisson loglinear model

Poisson distribution density function is

f(y) = e−µµy/y! = ey log µ−µ/y!

Loglinear model: use the canonical link

logµi = XT
i β

Or equivalently, µi = (eβ1)xi1 · · · (eβp)xip , assuming that each xij has a
multiplicative effect on yi.

• Estimated variance of β̂: v̂ar(β̂) = (XT ŴX)−1. Each diagonal ele-
ment wii = vii = var(yi) = µi

• Residual deviance:

D+(y, µ̂) = 2

n∑
i=1

[
yi log

(
yi
µ̂i

)
− yi + µ̂i

]
• Offset: forcing the coefficient of a variable to be 1.

Example: modeling rates, yi crime counts and ti the total population
within each county, and we assume

log(µi/ti) = XT
i β

or equivalently log(µi) = log(ti) +XT
i β. the adjustment term log(ti)

is called an offset as we do not need to estimate its coefficient.
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Quality No Particles Particles Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450

Table 1: 2 × 2 table. A sample of wafers was drawn and cross-classified
according to whether a particle was found on the die that produced the
wafer and whether the wafer was good or bad.

2 Poisson modeling for contingency tables

2.1 An example two-by-two table

This is from the Faraway book Chapter 6.1.

See Table 1 and we are interested in understanding the relationship between
the wafer quality and the particles on the dies.

1. The data is obtained by randomly sample 400 wafers without particles
and 50 with particles. This leads to a Binomial model where the
grouped-level data has 2 samples: Xi = 0, 1, Yi = 320, 14 and ni =
400, 50.

2. The data is obtained from observations during a fixed period of time
and we happen to observe 450 total observations. This leads to a
Poisson model where the data has 4 samples: Xi = 00, 01, 10, 11 and
Yi = 320, 80, 14, 36.

3. We randomly sample 450 wafers (by design) and cross-classify them.
This leads to a multinomial model where the grouped level data only
has one sample y = (320, 80, 14, 36) ∼ Multinomial(450, p).

Equivalence between the Poisson distribution and Multinomial distribution:

For independent Poisson counts (y1, · · · , yc), the total n =
∑
i yi follows

a Poisson distribution with mean
∑
i µi. Conditional on the total n, the

conditional joint distribution is

P (y1 = n1, · · · , yc = nc)

P (
∑
i yi = n)

=

(
n!∏
i ni!

) c∏
i=1

pni
i

and it follows a multinomial distribution.

• This indicates that we can view the data equivalently as there are n
i.i.d. samples and each sample follows a multinomial distribution to
choose one of the cells.

2.2 Two-way contingency table

Consider an r × c table for two categorical variables (denote as A and B).
The Poisson GLM assumes that the count yij in each cell independently
follows a Poisson distributions with mean µij . Consider two scenarios:

2.2.1 Two categorical variables are independent

If we assume that the two categorical variables are independent, then we
can assume

µij = µφiψj
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with
∑
i φi =

∑
j ψj = 1.

Equivalently, we can assume that

logµij = β0 + βAi + βBj

(We may assume a different identification condition
∑
i β

A
i =

∑
j β

B
j = 0).

This model has a [1 + (r−1) + (c−1)] free parameters (degree of freedom).

The non-constant part of the log-likelihood is

L(µ) =

r∑
i=1

c∑
j=1

yij logµij −
r∑
i=1

c∑
j=1

µij

As we use the canonical link, the score equations should be∑
i,j

(yij − µij) = 0

∑
j

(yij − µij) = 0, i = 1, 2, · · · , r

∑
i

(yij − µij) = 0, j = 1, 2, · · · , c

Thus we get the MLE: µ̂ = y++, φ̂i = yi+/y++ and ψ̂j = y+j/y++.

We can also write down the likelihood conditional on n, and we get the
same MLE (Chapter 7.2.2).

2.2.2 Two categorical variables has an interaction

We can assume
logµij = β0 + βAi + βBj + γABij

• We need identifiability conditions such as γAB1j = γABi1 = 0 for identi-
fiability.

• In total adds (r − 1)× (c− 1) more parameters

• This model is saturated

• The interactions can be interpreted as odds ratios. For instance,
r = c = 2

log
p11/p12
p21/p22

= log
µ11/µ12

µ21/µ22
= γAB11 + γAB22 − γAB12 − γAB21

Under our previous identification condition, the odds ratio is eγ
AB
22 .

2.3 Three-way contingency table

Consider an r × c× l table. Assume that for an individual sample

• Mutual independence

P (A = i, B = j, C = k) = P (A = i)P (B = j)P (C = k)

Equivalently, the loglinear form is

logµijk = β0 + βAi + βBj + βCk
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• Joint independence

P (A = i, B = j, C = k) = P (A = i)P (B = j, C = k)

Equivalently, the loglinear form is

logµijk = β0 + βAi + βBj + βCk + γBCjk

• Conditional independence

P (A = i, B = j | C = k) = P (A = i | C = k)P (B = j | C = k)

Equivalently, the loglinear form is

logµijk = β0 + βAi + βBj + βCk + γACik + γBCjk

• Homogeneous association

logµijk = β0 + βAi + βBj + βCk + γACik + γBCjk + γABij

An interpretation of this model is that any two pairs are dependent,
but the dependence does not change with the value of the third vari-
able.

• The saturated model allowing any dependence structure

logµijk = β0 + βAi + βBj + βCk + γACik + γBCjk + γABij + γABCijk

3 Connection with binomial/multinomial re-
gression models

• The log-linear model treat all categorical variables symmetrically as
X and regard the counts in each cell as response y.

• The logistic models treat one of the categorical variables as response
y and the remaining categorical variables as X.

Consider the case where r = 2 and treat it as the response variable for a
logistic regression. Then start from the loglinear model, we have

log
P (A = 1 | B = j, C = k)

P (A = 2 | B = j, C = k)

= logµ1jk − logµ2jk

=(βA1 − βA2 ) + (γAB1j − γAB2j ) + (γAC1k − γAC2k ) + (γABC1jk − γABC2jk )

Equivalently, we have the model

logit[P (A = 1 | B = j, C = k)] = λ+ δBj + δCk + δBCjk

which is a logistic regression model

• A three-term interaction in the Poisson model corresponds to the
interaction term in the logistic regression.

• The Poisson loglinear model and binomial logistic model also have
the same score equations

• The same results hold for the multinomial baseline-category logit
model

Next time: Chapters 7.3-7.5


