Lecture 10
Poisson loglinear model



Today’s topics:

* Poisson loglinear model
* Poisson modeling for contingency tables

* R example



Counts as the response in regression

In many applications, the response variables are counts

* Our examplein Lecture 1: the number of male satellite for female
horseshoe crabs

 Number of views for a YouTube video

* Number of mMRNA copies measured for each gene in RNA sequencing
experiments

Features of the counts:
 The response Y typically has a wide range of values
 Larger counts typically have higher randomness



Poisson loglinear model

Poisson distribution density function is
fy) = e #pl [yl = eV 1B HH [y!
Loglinear model: use the canonical link
log pi = X' B

Or equivalently, u; = (eP1)®it ... (efr)%» assuming that each z;; has a
multiplicative effect on y;.



Poisson loglinear model

e Estimated variance of 8: var(8) = (XTWX)~!. Each diagonal ele-
ment w;; = v;; = var(yz-) = M3

e Residual deviance:

A & Yi A
Dy(y, 1) =2) [yz- log (u_) — Yy + ﬂ/’i:|
1=1

(]

e Offset: forcing the coefficient of a variable to be 1.

Example: modeling rates, y; crime counts and ¢; the total population
within each county, and we assume

log(p:/t;) = X' B

or equivalently log(p;) = log(¢;) + X;' 8. the adjustment term log(¢;)
is called an offset as we do not need to estimate its coefficient.



R data example for the rate model

 Check Example 5 1 R notebook



Modeling a 2 X 2 table by three different ways

Quality | No Particles Particles | Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450

Table 1: 2 x 2 table. A sample of wafers was drawn and cross-classified
according to whether a particle was found on the die that produced the
wafer and whether the wafer was good or bad.

Goal: understand relationships between the two factors
Three different assumptions on data collection
 The data is obtained by randomly sample 400 wafers without
particles and 50 with particles
 This leads to a Binomial GLM where the grouped data has 2
samples (one for no particles, the other for particles)



Modeling a 2 X 2 table by three different ways

Quality | No Particles Particles | Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450

Three different assumptions on data collection
1. Randomly sample 400 wafers without particles and 50 with particles
2. Randomly sample 450 wafers and cross-classify them.
* This leads to a multinominal distribution y = (320, 80, 14,36) ~
Multinomial (450, p)
 (Can test whether the two factors are independent or not
3. The datais obtained from observations during a fixed period of time and we
happen to observe 450 total observations.
 This leads to a Poisson model where the data has 4 samples:
X; =00,01,10,11 and Y; = 320, 80, 14, 36.



Modeling a 2 X 2 table by three different ways

Equivalence between the Poisson distribution and Multinomial distribution:

For independent Poisson counts (y1,--- ,¥c), the total n = ). y; follows
a Poisson distribution with mean ). ;. Conditional on the total n, the
conditional joint distribution is

P(ylznla"'aycan)z n! ﬁp@i

and it follows a multinomial distribution.

e This indicates that we can view the data equivalently as there are n
i.i.d. samples and each sample follows a multinomial distribution to
choose one of the cells.



Modeling for contingency tables

Table 7.1 Number of Deaths from Lung Cancer, by Histology, Stage of Disease, and

Follow-up Time Interval®

Histology
Follow-up _ I 1l 11
Time Interval  Disease
(months) Stage: 1 2 3 1 2 3 1 2 3
0-2 9 12 42 5 4 28 1 1 19
(157 134 212 77 171 130 21 22 101)
24 2 7 26 2 3 19 1 1 11
(139 110 136 68 63 72 17 18 63)
4-6 9 5 12 3 5 10 1 3 7
(126 96 90 63 58 42 14 14 43)
6-8 10 10 10 2 4 5 1 1 6
(102 86 64 55 42 21 12 10 32)
8—10 1 4 5 2 2 0 0 0 3
(88 66 47 50 35 14 10 8 21)
10-12 3 3 4 2 1 3 1 0 3
(82 59 39 45 32 13 8 8 14)
12+ 1 4 1 2 4 2 0 2 3
(76 51 29 42 28 7 6 6 10)

“Values in parentheses represent total follow-up months at risk.



Two-way contingency table

Consider anr X c table for two categorical variables (denote as A and
B). The Poisson GLM assumes that the count y;; in each cell

independently follows a Poisson distributions with mean ;.

Consider two scenarios:
* Assume that two categorical variables are independent

Hij = sz'%'

* Allow two categorical variables to have an interaction

log pi; = Bo + B + B; + ;"



Two categorical variable are independent

Hij = M¢i¢j
with 2 ¢ = 2 =1

Equivalently, we can assume that

log pij = Bo + B + BY

(We may assume a different identification condition }~, 8 = Y. 82 =0).

Thismodel has 1 + (r — 1) + (¢ — 1) free parameters



Two categorical variable are independent

The non-constant part of the log-likelihood is

L(p) = Z Zyz‘j log i — Z Zﬁij

i=1 j=1 i=1 j=1

As we use the canonical link, the score equations should be

> (Wi — paig) =0
i,J
Z(y%j_p’w):oa ?::1,2,'“,?"

J
Y (i —mij) =0, j=1,2,---,c
1

Thus we get the MLE: i = y44, ¢; = Yit /y++ and ¥; = yy;/y 4.



Two categorical variable have an interaction

Pij = $i);0y;
We can assume
log pij = Bo + B + B7 +75°

e We need identifiability conditions such as *}/fljB = A48 = 0 for identi-
fiability:.

e In total adds (r — 1) X (¢ — 1) more parameters
e This model is saturated

e The interactions can be interpreted as odds ratios. For instance,
r=c=2

P11/pP12 log pi1/ P2

AB AB AB AB
= =71 +Y2 — Yz —7
P21/p22 #21/)”22 11 22 12 21

log

: : . . " . . ~AB
Under our previous identification condition, the odds ratio is €72z .

* In general, it is not very interpretable to test whether a specific )/{}‘-B = 0 or not



Three-way contingency table

 Consideranr X ¢ X [ table for three categorical variables (denote
as A, Band C).

* The Poisson GLM assumes that the count y; i in each cell
independently follows a Poisson distributions with mean y; .

 There are multiple scenarios for the dependence assumptions
across the three variables



Mutual independence

P(A=i,B=35,C=k)=P(A=14)P(B=j)P(C=k)
Equivalently, the loglinear form is

log ik = Bo + Bi* + BY + By
pij = diYink

* Again, we need the extra constraints: Y, 5! = 2 ,B]B =Y.p5=0
* Number of free parameters (degree of freedom for the model):
14r—-1+c—-14+1-1



Joint independence

P(A=i,B=35,C=k)=PA=1)P(B=jC=k)
Equivalently, the loglinear form is

log piji = Bo + B + B + BY + it

* Need constraints on “main effects”: Y, f{* = X ,BJB =Y. p5=0
* Additional constraints on the interactions: y]BlC = 0andyf< = 0foralljand k

 Number of free parameters (degree of freedom for the model):
1+r—-14+c—-1+1-1+(C—-1D{—-1)



Conditional independence Di = Py

PA=4,B=j|C=k)=PA=:|C=k)P(B=j|C=k)
Equivalently, the loglinear form is

1Ogll'z'jk;=50+5§4+555+5g+7ﬁc0+7ﬁ0

P(A=i,C=k)P(B=j,C=k)
P(C = k)

P(A=i,B=C=k) = = piYMkSi O

e Constraints:

© LB =X;B] =Xk =0
VA = 0and y{i¢ = 0foralliandk, yﬁc = 0and y&¢ = 0foralljand k

* Number of free parameters (degree of freedom for the model):
14r—-1+c—-1+l-1+0T-DU-D+(c—-D({U-1)



Homogenous association

log ik = Bo + B + B2 + BS +v4C + 41 + AP

* Any two pairs are dependent, but the dependence does not change
with the value of the third variable.

e Given any fixed level k of C, the conditional association
(conditional odds ratios) does not depend on k

P(A=i,| B=j,,C=k)/P(A=i;| B=j1,C=k)
P(A=i;| B=j;,C=k)/P(A=iy| B=j,,C=k)

does not depend on k

* The saturated model allows any dependence structure
log pijx = Bo + Bf* +B87 + By +74C + 5 +’Y§31-B +’Y€§EC



Connection with binomial/multinomial regressions

Consider the case where r = 2 and treat it as the response variable for a
logistic regression. Then start from the loglinear model, we have

P(A=1|B=j5C=k)
P(A=2|B=jC=k)

= log w1k — log pa;k

=(B1 = B5) + (vi;” —v3;") + (vl — ¥ ) + (V57 —13%°)
Equivalently, we have the model
logit[P(A=1|B=j,C=k)]=A+67+6 +6,,°

log

which is a logistic regression model



Connection with binomial/multinomial regressions

* The log-linear model treat all categorical variables symmetrically as X
and regard the counts in each cell as response .

* The logistic models treat one of the categorical variables as response y
and the remaining categorical variables as X.

* Athree-term interaction in the Poisson model corresponds to the
interaction term in the logistic regression.

* The Poisson loglinear model and binomial logistic model also have the
same score equations

 The same results hold for the multinomial baseline-category logit
model



R data example for contingency tables

 Check Example5 2 R notebook
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