Lecture 11 Parametric GLM models for over-dispersion

Today's topics:

Negative Binomial GLM

• Zero inflated models: ZIP, ZINB and hurdle models

Revisit the example of the horseshoe crab dataset

Beta-Binomial GLM

Over-dispersion in the Poisson model

- Poisson regression assume that $Var[y_i|X_i] = \mathbb{E}[y_i|X_i]$
- Over-dispersion: in practice, the counts y_i can be noisier than assumed in the Poisson distribution
- For instance, if $\log(\lambda_i) = X_i^T \beta + \epsilon_i$ indicating that X_i can not fully explain λ_i . Then

$$E(y_i) = E[E(y_i \mid \lambda_i)] = E(\lambda_i)$$

while

$$Var(y_i) = E[Var(y_i \mid \lambda_i)] + Var[E(y_i \mid \lambda_i)] = E(\lambda_i) + Var(\lambda_i) > E(y_i)$$

Over-dispersion examples

Over-dispersion in the Poisson model

- For example, we saw the over-dispersion issue in the horseshoe satellites dataset in Data Example 1 and homework 1, 1.22(a).
- Over-dispersion happens in Poisson and Binomial (Multinomial) GLM models as the variance is completely determined by the mean.
- There is no over-dispersion issue in linear models as linear models has an extra dispersion parameter.
- We will talk about semi-parametric solutions for over-dispersion issues in next lecture

Negative binomial distribution

Negative binomial distribution: $y \sim \text{Poisson}(\lambda)$ and $\lambda \sim \text{Gamma}(\mu, k)$ $[\mathbb{E}(\lambda) = \mu]$. The probability function of y is

$$f(y; \mu, k) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{\mu}{\mu+k}\right)^y \left(\frac{k}{\mu+k}\right)^k$$

where $\gamma = 1/k$ is called a dispersion parameter.

- $\mathbb{E}(y) = \mu$, $\operatorname{Var}(y) = \mu + \gamma \mu^2$
- Negative Binomial distribution with fixed k belongs to the exponential family: $\theta = \log(\mu\gamma/(\mu\gamma + 1))$ and $b(\theta) = -1/\gamma \log(\mu\gamma + 1) = 1/\gamma \log(1 e^{\theta})$

Negative binomial distribution

It is defined as compound distribution (Gamma-Poisson mixture)

Mean and variance of a Gamma distribution:

$$\mu = k\theta$$
, $Var(\lambda) = k\theta^2 = \frac{\mu^2}{k} = \gamma \mu^2$

For NB distribution

$$\mathbb{E}(y) = \mu$$
, $\operatorname{Var}(y) = \mu + \gamma \mu^2$

Negative binomial GLM

We assume that

$$y_i \sim NB(\mu_i, k_i)$$

with the link function $g(\mu_i) = X_i^T \beta$.

- Typically, we assume that all samples share the same dispersion, so $\gamma_i = \frac{1}{k_i} = \gamma$.
- As an extension of the Poisson GLM, a common link for NB GLM is still the loglinear link: $g(\mu_i) = \log(\mu_i)$
- Score equation for β

$$\sum_{i} \frac{y_i - \mu_i}{\mu_i + \gamma \mu_i^2} \mu_i x_{ij} = \sum_{i} \frac{y_i - \mu_i}{1 + \gamma \mu_i} x_{ij} = 0$$

Negative binomial GLM

A bit about the inference:

The hessian matrix has the term

$$\frac{\partial^2 L(\boldsymbol{\beta}, \boldsymbol{\gamma}; \boldsymbol{y})}{\partial \beta_j \partial \boldsymbol{\gamma}} = -\sum_i \frac{(y_i - \mu_i) x_{ij}}{(1 + \boldsymbol{\gamma} \mu_i)^2} \left(\frac{\partial \mu_i}{\partial \eta_i} \right).$$

Thus, $E(\partial^2 L/\partial \beta_i \partial \gamma) = 0$ for each j, and β and γ are orthogonal parameters

• the asymptotic variance of $\hat{\beta}$ would be the same no matter γ is estimated or known (Agresti book chapter 7.3.3)

$$\widehat{\operatorname{Var}}(\hat{\beta}) = (X^T \hat{W} X)^{-1}$$

• $w_i = \mu_i/(1 + \gamma \mu_i)$

Zero-inflated counts

For a Poisson distribution $y \sim \text{Poisson}(\mu)$: $P(y=0) = e^{-\mu}$

For a Negative Binomial distribution $y \sim NB(\mu, k)$: $P(y = 0) = \left(\frac{k}{\mu + k}\right)^k$

- In practice, there may be way more 0 counts than what these distributions can allow
- Example: y_i is the number of times going to a gym for the past week and there may be a substantial proportion who never exercise

Zero-inflated Poisson models

The ZIP model:

$$y_i \sim \begin{cases} 0 & \text{with probability } 1 - \phi_i \\ \text{Poisson}(\lambda_i) & \text{with probability } \phi_i \end{cases}$$

We can interpret this as having a latent binary variable $Z_i \sim \text{Bernoulli}(\phi_i)$. If $z_i = 0$ then $y_i = 0$, and if $z_i = 1$ then y_i follows a Poisson distribution. For the GLM model, a common assumption for the links are:

$$logit(\phi_i) = X_{1i}^T \beta_1, \quad log(\lambda_i) = X_{2i}^T \beta_2$$

• The mean is $E(y_i) = \phi_i \lambda_i$ and the variance is

$$Var(y_i) = \phi_i \lambda_i [1 + (1 - \phi_i) \lambda_i] > E(y_i)$$

So zero-inflation can also cause over-dispersion

Zero-inflated Negative Binomial models

• We may still see over-dispersion conditional on Z_i , then we can use a ZINB model where

$$y_i \sim \begin{cases} 0 & \text{with probability } 1 - \phi_i \\ \text{NB}(\lambda_i, k) & \text{with probability } \phi_i \end{cases}$$

- We can still use MLE to solve both the ZIP and ZINB model
- The ZIP/ZINB model do not allow zero deflation.

The Hurdle model

 The Hurdle model separates the analysis of zero counts and positive counts.

Let

$$y_i' = \begin{cases} 0 & \text{if } y_i = 0 \\ 1 & \text{if } y_i > 0 \end{cases}$$

The Hurdle model assumes that $y_i' \sim \text{Bernoulli}(\pi_i)$ and $y_i \mid y_i > 0$ follows a truncated-at-zero Poisson (Poi (μ_i)) / Negative Binomial (NB (μ_i, γ)) distribution. Let the untruncated probability function be $f(y_i; \mu_i)$, then

$$P(y_i = k) = \pi_i \frac{f(k; \mu_i)}{1 - f(0; \mu_i)}, \quad \text{for } k \neq 0$$

$$P(y_i = 0) = 1 - \pi_i$$

For the GLM, we may assume

$$\operatorname{logit}(\pi_i) = X_{1i}^T \beta_1, \quad \operatorname{log}(\mu_i) = X_{2i}^T \beta_2$$

The Hurdle model

The joint likelihood function for the two-part hurdle model is

$$\mathcal{E}(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}) = \prod_{i=1}^{n} (1 - \pi_{i})^{I(y_{i}=0)} \left[\pi_{i} \frac{f(y_{i}; \mu_{i})}{1 - f(0; \mu_{i})} \right]^{1 - I(y_{i}=0)},$$

where $I(\cdot)$ is the indicator function. If $(1 - \pi_i) > f(0; \mu_i)$ for every i, the model represents zero inflation. The log-likelihood separates into two terms, $L(\beta_1, \beta_2) = L_1(\beta_1) + L_2(\beta_2)$, where

$$L_1(\boldsymbol{\beta}_1) = \sum_{y_i=0} \left[\log \left(1 - \pi_i \right) \right] + \sum_{y_i>0} \log \left(\pi_i \right)$$

$$L_2(\boldsymbol{\beta}_2) = \sum_{y_i > 0} \left\{ \log f\left(y_i; \exp(\boldsymbol{x}_{2i}\boldsymbol{\beta}_2)\right) - \log\left[1 - f(0; \exp(\boldsymbol{x}_{2i}\boldsymbol{\beta}_2))\right] \right\}$$

Revisit the horseshoe crab data

• Check Example 6 R notebook

Violation of the variance assumptions in GLM

In earlier models, we typically have assumptions on the variance of $y_i|X_i$

- Gaussian linear model: $Var(y_i) = \sigma^2$
- GLM with Binomial / Multinomial / Poisson models: fixed meanvariance relationship

As we saw earlier, real data can have over-dispersion / under-dispersion or unequal variances, which violates these variance assumptions

- With wrong variance assumption but correct mean assumption (link function)
 - Typically still get consistent point estimate $\hat{\beta}$
 - Inference on $\hat{\beta}$ can be heavily impacted

Variance inflation in binomial GLM

For the ungrouped Binary data, previous Binary GLM assumed that conditional on having the same X_i , the y_i are i.i.d. Bernoulli trials.

What if the samples within each group are correlated?

Analogous to the Poisson case, we can have the scenario

$$y_i \sim \text{Binomial}(n_i, p_i) \text{ but } \text{logit}(p_i) = X_i^T \beta + \epsilon_i$$

Such a hierarchical model leads to variance inflation:

$$Var(y_i) > n_i p_i (1 - p_i)$$

• If you treat y_i as a sum of Bernoulli variables $y_i = \sum_j Z_{ij}$ where $Z_{ij} \sim \text{Bernoulli}(p_i)$, then randomness in p_i causes dependence among Z_{ij} .

Beta-binomial distribution

• The Beta-binomial distribution assumes that $y \sim \text{Binomial}(n, p)$ and $p \sim \text{beta}(\alpha, \beta)$. The beta distribution of p has the density function:

$$f(p; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

Beta distribution

Mean and variance of a Beta distribution:

$$\mu = \frac{\alpha}{\alpha + \beta},$$

$$Var(p) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} = \mu(1 - \mu)$$

For Beta-binomial distribution distribution

$$E(y) = n\mu$$
, $Var(y) = n\mu(1-\mu)[1+(n-1)\rho]$

where
$$\rho = 1/(\alpha + \beta + 1)$$
.

Beta-binomial GLM

We assume that

$$y_i \sim \text{Beta-binomial}(n_i, \mu_i, \rho)$$

with the link function $g(\mu_i) = X_i^T \beta$. $\mathbb{E}(y_i) = n_i \mu_i$

- As before, we assume that all samples share the same dispersion, so there is only one unknown dispersion parameter ρ .
- A common link for Beta-binomial GLM is still the logit link:

$$logit(\mu_i) = X_i^T \beta$$

• Both eta and ho are unknown but we can estimate using MLE.