
Lecture 11 
Parametric GLM models for 

over-dispersion



Today’s topics:

• Negative Binomial GLM 

• Zero inflated models: ZIP, ZINB and hurdle models 

• Revisit the example of the horseshoe crab dataset

• Beta-Binomial GLM



• Poisson regression assume that Var 𝑦𝑖 𝑋𝑖] = 𝔼 𝑦𝑖 𝑋𝑖]
• Over-dispersion: in practice, the counts 𝑦𝑖 can be noisier than 

assumed in the Poisson distribution

• For instance, if log(𝜆𝑖) = 𝑋𝑖
𝑇𝛽 + 𝜖𝑖  indicating that 𝑋𝑖 can not fully 

explain 𝜆𝑖. Then

Over-dispersion in the Poisson model



Over-dispersion examples

https://stats.stackexchange.com/questions/331086/investigate-
overdispersion-in-a-plot-for-a-poisson-regression

https://towardsdatascience.com/adjust-for-overdispersion-in-poisson-regression-4b1f52baa2f1



• For example, we saw the over-dispersion issue in the horseshoe 
satellites dataset in Data Example 1 and homework 1, 1.22(a). 

• Over-dispersion happens in Poisson and Binomial (Multinomial) GLM 
models as the variance is completely determined by the mean. 

• There is no over-dispersion issue in linear models as linear models 
has an extra dispersion parameter. 

• We will talk about semi-parametric solutions for over-dispersion 
issues in next lecture

Over-dispersion in the Poisson model



Negative binomial distribution



Negative binomial distribution

• It is defined as compound distribution (Gamma-Poisson mixture)

• Mean and variance of a Gamma distribution: 

𝜇 = 𝑘𝜃,  Var 𝜆 = 𝑘𝜃2 =
𝜇2

𝑘
= 𝛾𝜇2

• For NB distribution



Negative binomial GLM

• We assume that

with the link function 𝑔 𝜇𝑖 = 𝑋𝑖
𝑇𝛽.

• Typically, we assume that all samples share the same dispersion, so 𝛾𝑖 =
1

𝑘𝑖
=

𝛾. 
• As an extension of the Poisson GLM, a common link for NB GLM is still the 

loglinear link: 𝑔 𝜇𝑖 = log(𝜇𝑖)
• Score equation for 𝛽



Negative binomial GLM

A bit about the inference:
• The hessian matrix has the term

• the asymptotic variance of መ𝛽 would be the same no matter 𝛾 is estimated or 
known (Agresti book chapter 7.3.3)

• 𝑤𝑖 = 𝜇𝑖/(1 + 𝛾𝜇𝑖)



Zero-inflated counts

• In practice, there may be way more 0 counts than what these 
distributions can allow

• Example: 𝑦𝑖 is the number of times going to a gym for the past week 
and there may be a substantial proportion who never exercise



Zero-inflated Poisson models 



Zero-inflated Negative Binomial models 

• We can still use MLE to solve both the ZIP and ZINB model

• The ZIP/ZINB model do not allow zero deflation.



The Hurdle model

• The Hurdle model separates the analysis of zero counts and 
positive counts.



The Hurdle model



Revisit the horseshoe crab data

• Check Example6 R notebook



In earlier models, we typically have assumptions on the variance of 𝑦𝑖|𝑋𝑖

• Gaussian linear model: Var 𝑦𝑖 = 𝜎2

• GLM with Binomial / Multinomial / Poisson models: fixed mean-
variance relationship

As we saw earlier, real data can have over-dispersion / under-dispersion 
or unequal variances, which violates these variance assumptions

• With wrong variance assumption but correct mean assumption (link
function)

• Typically still get consistent point estimate መ𝛽

• Inference on መ𝛽 can be heavily impacted

Violation of the variance assumptions in GLM



For the ungrouped Binary data, previous Binary GLM assumed that conditional 

on having the same 𝑋𝑖, the 𝑦𝑖  are i.i.d. Bernoulli trials. 

What if the samples within each group are correlated?
• Analogous to the Poisson case, we can have the scenario

• Such a hierarchical model leads to variance inflation:

• If you treat 𝑦𝑖 as a sum of Bernoulli variables 𝑦𝑖 = σ𝑗 𝑍𝑖𝑗 where 

𝑍𝑖𝑗~Bernoulli(𝑝𝑖), then randomness in 𝑝𝑖 causes dependence among 𝑍𝑖𝑗.

Variance inflation in binomial GLM



Beta-binomial distribution

• Beta distribution

• Mean and variance of a Beta distribution: 

𝜇 =
𝛼

𝛼 + 𝛽
, 

Var 𝑝 =
𝛼𝛽

𝛼 + 𝛽 2(𝛼 + 𝛽 + 1)
= 𝜇(1 − 𝜇)

• For Beta-binomial distribution distribution



Beta-binomial GLM

• We assume that

with the link function 𝑔 𝜇𝑖 = 𝑋𝑖
𝑇𝛽. 𝔼 𝑦𝑖 = 𝑛𝑖𝜇𝑖

• As before, we assume that all samples share the same dispersion, 
so there is only one unknown dispersion parameter 𝜌. 

• A common link for Beta-binomial GLM is still the logit link: 

• Both 𝛽 and 𝜌 are unknown but we can estimate using MLE.
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