Lecture 11
Parametric GLM models for
over-dispersion



Today’s topics:

* Negative Binomial GLM
e Zero inflated models: ZIP, ZINB and hurdle models

* Revisit the example of the horseshoe crab dataset

e Beta-Binomial GLM



Over-dispersion in the Poisson model

 Poisson regression assume that Var|y;|X;] = E|y;|X;]
* Qver-dispersion: in practice, the counts y; can be noisier than

assumed in the Poisson distribution

* Forinstance, iflog(1;) = X/ + €; indicating that X; can not fully
explain A;. Then

E(y;) = E[E(y: | )| = E(M\)

while

Var(y;) = E[Var(y; | Ai)] + Var[E(y; | A;)] = E(\;) + Var(\;) > E(y;)



Over-dispersion examples
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Over-dispersion in the Poisson model

 For example, we saw the over-dispersion issue in the horseshoe
satellites dataset in Data Example 1 and homework 1, 1.22(a).

* OQOver-dispersion happens in Poisson and Binomial (Multinomial) GLM
models as the variance is completely determined by the mean.

 Thereis no over-dispersion issue in linear models as linear models
has an extra dispersion parameter.

 We will talk about semi-parametric solutions for over-dispersion
issues in next lecture



Negative binomial distribution

Negative binomial distribution: y ~ Poisson(\) and A ~ Gamma(u, k)
[E(A) = u]. The probability function of y is

wh) = s () (ee)

where v = 1/k is called a dispersion parameter.

e E(y) =p, Var(y) =p+yp?

e Negative Binomial distribution with fixed £ belongs to the exponen-
tial family: 6 = log(uy/(uy + 1)) and b(0) = —1/ylog(uy + 1) =
1/7log(1 —€°)



Negative binomial distribution
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It is defined as compound distribution (Gamma-Poisson mixture)
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Mean and variance of a Gamma distribution:

2
Var(1) = k62 = £ _ yu?

u = ko, k

For NB distribution

E(y) = p, Var(y)=p+yp’



Negative binomial GLM

e We assume that
Yi ~~ NB(uiak’i)

with the link function g(u;) = X/ 5.
* Typically, we assume that all samples share the same dispersion, soy; = ki
l
y.
 As an extension of the Poisson GLM, a common link for NB GLM is still the

loglinear link: g(u;) = log(u;)
* Score equation for 3
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Negative binomial GLM

A bit about the inference:
e The hessian matrix has the term

PLPB.,v;y) _ ~ Vi~ HXy (o
on; |

0p;0y ~ (1 + ;)2

Thus, E(0°L/0p;0y) = 0 for each j, and B and y are orthogonal parameters

* the asymptotic variance of ,@ would be the same no matter y is estimated or
known (Agresti book chapter 7.3.3)

Var(8) = (XTWX)™!

* w; =/ +yu)



/ero-inflated counts

For a Poisson distribution y ~ Poisson(u): P(y =0) =e™#

k
For a Negative Binomial distribution y ~ NB(u, k): P(y =0) = (ﬁ)

* |n practice, there may be way more 0 counts than what these
distributions can allow

* Example: y; is the number of times going to a gym for the past week
and there may be a substantial proportion who never exercise
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/ero-inflated Poisson models
The ZIP model:

| 0 with probability 1 — ¢;
vi Poisson()\;) with probability ¢;

We can interpret this as having a latent binary variable Z; ~ Bernoulli(¢;).
If z; =0 then y; = 0, and if z; = 1 then y; follows a Poisson distribution.
For the GLM model, a common assumption for the links are:

logit(¢;) = X{;81, log(As) = X3,52
e The mean is E(y;) = ¢;\; and the variance is
Var(y;) = ¢oi i1+ (1 — i) Ni] > E(ys)

So zero-inflation can also cause over-dispersion



Zero-inflated Negative Binomial models

e We may still see over-dispersion conditional on Z;, then we can use a

ZINB model where
| 0 with probability 1 — ¢;
vi NB()\;, k) with probability ¢;

e We can still use MLE to solve both the ZIP and ZINB model

 The ZIP/ZINB model do not allow zero deflation.



The Hurdle model

 The Hurdle model separates the analysis of zero counts and

positive counts.
Let

’ 1 ify; >0

The Hurdle model assumes that y, ~ Bernoulli(7;) and y; | y; > 0 follows
a truncated-at-zero Poisson (Poi(u;)) / Negative Binomial (NB(u;,y)) dis-
tribution. Let the untruncated probability function be f(y;; u;), then

f(k; ps)
1— f(0; )

P(yz‘zo):l—’ﬁi

P(y; =k) =m; for kK # 0

For the GLM, we may assume

logit(m;) = X1;81, log(u:) = X3;82



The Hurdle model

The joint likelihood function for the two-part hurdle model is

n f@ . ) I_I(Yi:O)
281, B,) = TT(1 = Y 0i=0 | 5 L0 i ,

where I(-) 1s the indicator function. If (1 — x;) > f(0; u;) for every i, the model
represents zero inflation. The log-likelihood separates into two terms, L(f{, f,) =

Li(By) + Ly(B,), where

L) = D, [log (1-m)] + . log ()

yi= 0 yi>0

Ly(p,) = Z {logf (yi§eXP(xziﬁ2)) — log [1 —f(0; eXP(xziﬂz))]}

yi>0



Revisit the horseshoe crab data

 Check Example6 R notebook



Violation of the variance assumptions in GLM

In earlier models, we typically have assumptions on the variance of y;|X;

 Gaussian linear model: Var(y;) = o

 GLM with Binomial / Multinomial / Poisson models: fixed mean-
variance relationship

As we saw earlier, real data can have over-dispersion / under-dispersion
or unequal variances, which violates these variance assumptions

 With wrong variance assumption but correct mean assumption (link
function)
* Typically still get consistent point estimate ,63
* |nference on B can be heavily impacted



Variance inflation in binomial GLM

For the ungrouped Binary data, previous Binary GLM assumed that conditional
on having the same X;, the y; are i.i.d. Bernoulli trials.

What if the samples within each group are correlated?
* Analogous to the Poisson case, we can have the scenario

y; ~ Binomial(n;, p;) but logit(p;) = X! B8 + €;

e Such a hierarchical model leads to variance inflation:
Var(y;) > n;pi(1 — p;)

* |Ifyou treat y; as a sum of Bernoulli variables y; = Z]- Zij Where
Z;j~Bernoulli(p;), then randomness in p; causes dependence among Z;;.
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Beta-binomial distribution

e The Beta-binomial distribution assumes that y ~ Binomial(n, p) and
p ~ beta(a, 8). The beta distribution of p has the density function:

fpa, B) =

e Beta distribution
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 For Beta-binomial distribution distribution

E(y) =np, Var(y)=nu(l—p) 1+ (n—1)p]

where p=1/(a+ F+1).




Beta-binomial GLM

e We assume that

y; ~ Beta-binomial(n;, u;, p)

with the link function g(u;) = X/ 5. E(y;) = n;u;
* As before, we assume that all samples share the same dispersion,
so there is only one unknown dispersion parameter p.
* A common link for Beta-binomial GLM is still the logit link:

logit(u;) = X; B

* Both ff and p are unknown but we can estimate using MLE.
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