Lecture 12

Quasi-likelihood and
Sandwich estimator



Today’s topics:

e Quasi-likelihood

e Estimating equations and the Sandwich estimator



Quasi-likelihood method

* Using the NB GLM instead of Poisson GLM / Beta-binomial GLM instead of a

binomial GLM
* Replace with a more complicated parametric distribution allowing an extra

dispersion parameter in the variance of data
* Hard to check whether the more complicated parametric distribution is the

correct model or not

 We can provide a more general solution: the quasi-likelihood method
* No parametric distributional assumption needed on the response
* Only require the correct specification of a mean-variance relationship
 We do not have a likelihood for the data, but we can still have an estimating
equation to estimate the parameters and perform statistical inference (even

when the mean-variance relationship is incorrectly specified)



Quasi-likelihood method

Remind the the score equation for the exponential family distributed data
is:

—_— = = 0
9B, 2. Var(y;)  g'(p:)

e These score equations only involve E(y;) = p; and Var(y;).

e Quasi-likelihood: we replace Var(y;) by some other mean-variance
relationship that we believe can better fit the data.

e Typically, the mean-variance relationship can involves another un-
known dispersion parameter.

e Here, we DO NOT assume any other aspects of the distribution of y;
besides mean and variance.

 Why is it a good estimator?

¢ E (aa—;) = 0 aslong as E(y;|x;) = y; (the link function is correct)
J

* Belongs to the general class of Z-estimators



Common forms of mean-variance relationship

e Proportional: a(u;, ) = ¢pv*(u;).
— counts: assume a(u;, ¢) = G,

— grouped Binary data: a(u;, ¢) = éu;(n; — p;)/n;

e For counts we can also assume a(u;, @) = u; + q&uf as in the Negative-
Binomial distribution

e For grouped Binary data we can also assume a(u;,®) = p;(n; —
t;) (14 (n; — 1)¢) as in the Beta-Binomial distribution



How to estimate with quasi-likelihood

* Plug in the mean-variance relationship into the following "score equation”
(we now call it the estimating equation) for 3

oL (yi —pa)zi 1
©15(8,9) = 8B; Z a(ui,d) Q’(Nz’)_o

* For proportional mean-variance relationship, ¢ will be canceled
* For other mean-variance relationship, the estimating equation becomes a
function for both f and ¢
* We need another estimating equation for estimating ¢
e Use the following moment condition to build an estimating equation for

¢ : n

e2(8,0) = 3 Ui (n—p) = 0

()




How to estimate with quasi-likelihood

When a(u;, ¢) = ¢v*(u;), we can get B thus j; first without knowing
¢. Then define

We can solve ¢ by solving X% = n — p (we use n — p instead of n to
correct for the degree of freedom in the estimated fi;), which is

1 (yi — fii)?
 n-— pZ

v* (/flz




How to estimate with quasi-likelihood

For other forms of a(u, ¢), we need to solve ¢ and B simultaneously
from equations

| (yi —pi)zs; 1
£13(P,9) = 3/3.7 Z a(pi; ¢)  g'(pi) Y g
o2(B,9) = Z(am% ~(n-p)=0 )

— E[p1;(8,9)] = 0 and E[pa(8, ¢)]/n — 0. Solutions B and ¢ are

called Z-estimators. Under proper regularity conditions, we can
show that both 8 and q’) are consistent.



Properties of the estimates

e The proportional mean-variance relationship is the easiest for the
computation of B as ¢ cancels and does not affect solving the score
equations for S.

o Var(,@) is aflected by ¢ for any of the above mean-variance relation-
ships.

e Including ¢ helps to get a correct uncertainty quantification of A.



Statistical inference for quasi-likelihood estimator

* How to estimate the variance of ,3 from the quasi-likelihood
equations?

 And what if we do not even know the true form of the mean-
variance relationship?



Estimating equations

e The equations (2) is one type of estimating equations. In general, the
estimating equations for parameters 6 (here § = (3, ¢) or 8 = 3) have

the form:
u(@) =) u;(6) =0

Denote the solution of these equations as 6 and the true 0 as 6.

— Consistency: roughly speaking, when p is small, if E(u(6p)) — 0
when n — oo, then we can have § — 6y (with some additional
conditions).

— Variance of 8. Under consistency, we can estimate the asymp-
totic variance of 6 by first-order Taylor expansion (see later).



Estimating equations

e The score equations

_ (ys — pi)zi; 1
u(f) =2 ) )

i
are valid estimating equations (E[u(8p)] = 0) as long as as the link
function is correct. The response y; does not need to follow the as-

sumed exponential family distribution and v*(u;) does not need to be
the correct form of variance.

e Even the simple » .(y; — p:)zi; = 0 are always valid estimating equa-
tions. The problem is that sd(8) may be large if samples have unequal
variances.



Sandwich estimator

Let’s now calculate the asymptotic variance of 9 for
u() =0
By first-order Taylor expansion, we have
0 = u(f) ~ u(by) + u(hy) (8 — 6p)

Thus, we have

0 — 6y ~ —u(6) ‘u(bp)



Roughly speaking, we have

e Law of large numbers:

(o) = - > (o) > B (717, Zui(eo)) — A

=1
e CLT:
1

\/EU(GO) = % ;uz‘(ﬁ’o) ~ N(0,V)

Thus X
Var(§) ~ A~'VA~T /n

In practice, we can estimate A and V' by

1. Different from
A= - Z u;(0) before when we
work on the score

and / equations (more

~ 1 N - .
— . . arametric-free
1% - Z u; (0)u;(0) P )



Comments

Var(§) =~ A"'VA™ T /n

In practice, we can estimate A and V by

and

e We use the sample variance to approximate V without knowing the
distribution of the data

e The Sandwich estimator provides an estimate of the variance of J
even when model assumption is violated.



Revisit the horseshoe crab data

 Check Example7 R notebook
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