Lecture 12 Quasi-likelihood and Sandwich estimator

Today's topics:

Quasi-likelihood

• Estimating equations and the Sandwich estimator

Quasi-likelihood method

- Using the NB GLM instead of Poisson GLM / Beta-binomial GLM instead of a binomial GLM
 - Replace with a more complicated parametric distribution allowing an extra dispersion parameter in the variance of data
 - Hard to check whether the more complicated parametric distribution is the correct model or not
- We can provide a more general solution: the quasi-likelihood method
 - No parametric distributional assumption needed on the response
 - Only require the correct specification of a mean-variance relationship
 - We do not have a likelihood for the data, but we can still have an estimating equation to estimate the parameters and perform statistical inference (even when the mean-variance relationship is incorrectly specified)

Quasi-likelihood method

Remind the score equation for the exponential family distributed data is:

$$\frac{\partial L}{\partial \beta_j} = \sum_i \frac{(y_i - \mu_i)x_{ij}}{\operatorname{Var}(y_i)} \frac{1}{g'(\mu_i)} = 0$$

- These score equations only involve $E(y_i) = \mu_i$ and $Var(y_i)$.
- Quasi-likelihood: we replace $Var(y_i)$ by some other mean-variance relationship that we believe can better fit the data.
- Typically, the mean-variance relationship can involves another unknown dispersion parameter.
- Here, we DO NOT assume any other aspects of the distribution of y_i besides mean and variance.
- Why is it a good estimator?
 - $\mathbb{E}\left(\frac{\partial L}{\partial \beta_i}\right) = 0$ as long as $\mathbb{E}(y_i|x_i) = \mu_i$ (the link function is correct)
 - Belongs to the general class of Z-estimators

Common forms of mean-variance relationship

- Proportional: $a(\mu_i, \phi) = \phi v^*(\mu_i)$.
 - counts: assume $a(\mu_i, \phi) = \phi \mu_i$
 - grouped Binary data: $a(\mu_i, \phi) = \phi \mu_i (n_i \mu_i) / n_i$

- For counts we can also assume $a(\mu_i, \phi) = \mu_i + \phi \mu_i^2$ as in the Negative-Binomial distribution
- For grouped Binary data we can also assume $a(\mu_i, \phi) = \mu_i(n_i \mu_i)(1 + (n_i 1)\phi)$ as in the Beta-Binomial distribution

How to estimate with quasi-likelihood

• Plug in the mean-variance relationship into the following "score equation" (we now call it the estimating equation) for β

$$\varphi_{1j}(\beta,\phi) = \frac{\partial L}{\partial \beta_j} = \sum_i \frac{(y_i - \mu_i)x_{ij}}{a(\mu_i,\phi)} \frac{1}{g'(\mu_i)} = 0$$

- For proportional mean-variance relationship, ϕ will be canceled
- For other mean-variance relationship, the estimating equation becomes a function for both β and ϕ
- We need another estimating equation for estimating ϕ
 - Use the following moment condition to build an estimating equation for ϕ :

$$\varphi_2(\beta, \phi) = \sum_{i=1}^n \frac{(y_i - \mu_i)^2}{a(\mu_i, \phi)} - (n - p) = 0$$

How to estimate with quasi-likelihood

When $a(\mu_i, \phi) = \phi v^*(\mu_i)$, we can get $\hat{\beta}$ thus $\hat{\mu}_i$ first without knowing ϕ . Then define

$$X^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{\mu}_{i})^{2}}{\phi v^{\star}(\hat{\mu}_{i})}$$

We can solve ϕ by solving $X^2 = n - p$ (we use n - p instead of n to correct for the degree of freedom in the estimated $\hat{\mu}_i$), which is

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_i)^2}{v^*(\hat{\mu}_i)}$$

How to estimate with quasi-likelihood

For other forms of $a(\mu, \phi)$, we need to solve ϕ and β simultaneously from equations

$$\varphi_{1j}(\beta,\phi) = \frac{\partial L}{\partial \beta_j} = \sum_i \frac{(y_i - \mu_i)x_{ij}}{a(\mu_i,\phi)} \frac{1}{g'(\mu_i)} = 0 \tag{1}$$

$$\varphi_2(\beta, \phi) = \sum_{i=1}^n \frac{(y_i - \mu_i)^2}{a(\mu_i, \phi)} - (n - p) = 0$$
 (2)

 $-\mathbb{E}[\varphi_{1j}(\beta,\phi)] = 0$ and $\mathbb{E}[\varphi_2(\beta,\phi)]/n \to 0$. Solutions $\hat{\beta}$ and $\hat{\phi}$ are called Z-estimators. Under proper regularity conditions, we can show that both $\hat{\beta}$ and $\hat{\phi}$ are consistent.

Properties of the estimates

- The proportional mean-variance relationship is the easiest for the computation of $\hat{\beta}$ as ϕ cancels and does not affect solving the score equations for β .
- $Var(\hat{\beta})$ is affected by ϕ for any of the above mean-variance relationships.
- Including ϕ helps to get a correct uncertainty quantification of $\hat{\beta}$.

Statistical inference for quasi-likelihood estimator

- How to estimate the variance of $\hat{\beta}$ from the quasi-likelihood equations?
- And what if we do not even know the true form of the meanvariance relationship?

Estimating equations

• The equations (2) is one type of estimating equations. In general, the estimating equations for parameters θ (here $\theta = (\beta, \phi)$ or $\theta = \beta$) have the form:

$$u(\theta) = \sum_{i} u_i(\theta) = 0$$

Denote the solution of these equations as $\hat{\theta}$ and the true θ as θ_0 .

- Consistency: roughly speaking, when p is small, if $E(u(\theta_0)) \to 0$ when $n \to \infty$, then we can have $\hat{\theta} \to \theta_0$ (with some additional conditions).
- Variance of $\hat{\theta}$. Under consistency, we can estimate the asymptotic variance of $\hat{\theta}$ by first-order Taylor expansion (see later).

Estimating equations

• The score equations

$$u(\beta) = \sum_{i} \frac{(y_i - \mu_i)x_{ij}}{v^*(\mu_i)} \frac{1}{g'(\mu_i)} = 0$$

are valid estimating equations $(\mathbb{E}[u(\beta_0)] = 0)$ as long as as the link function is correct. The response y_i does not need to follow the assumed exponential family distribution and $v^*(\mu_i)$ does not need to be the correct form of variance.

• Even the simple $\sum_{i} (y_i - \mu_i) x_{ij} = 0$ are always valid estimating equations. The problem is that $sd(\hat{\beta})$ may be large if samples have unequal variances.

Sandwich estimator

Let's now calculate the asymptotic variance of $\hat{\theta}$ for

$$\mu(\hat{\theta}) = 0$$

By first-order Taylor expansion, we have

$$0 = u(\hat{\theta}) \approx u(\theta_0) + \dot{u}(\theta_0)(\hat{\theta} - \theta_0)$$

Thus, we have

$$\hat{\theta} - \theta_0 \approx -\dot{u}(\theta_0)^{-1} u(\theta_0)$$

Roughly speaking, we have

• Law of large numbers:

$$\frac{1}{n}\dot{u}(\theta_0) = \frac{1}{n}\sum_{i=1}^n \dot{u}_i(\theta_0) \to E\left(\frac{1}{n}\sum_{i=1}^n \dot{u}_i(\theta_0)\right) = A$$

• CLT:

$$\frac{1}{\sqrt{n}}u(\theta_0) = \frac{1}{\sqrt{n}}\sum_{i=1}^n u_i(\theta_0) \approx N(0, V)$$

Thus

$$\operatorname{Var}(\hat{\theta}) \approx A^{-1} V A^{-T} / n$$

In practice, we can estimate A and V by

$$\widehat{A} = \frac{1}{n} \sum_{i=1}^{n} \dot{u}_i(\widehat{\theta})$$

and

$$\widehat{V} = \frac{1}{n} \sum_{i} u_i(\widehat{\theta}) u_i(\widehat{\theta})^T$$

Different from before when we work on the score equations (more parametric-free)

Comments

$$\operatorname{Var}(\hat{\theta}) \approx A^{-1} V A^{-T} / n$$

In practice, we can estimate A and V by

$$\widehat{A} = \frac{1}{n} \sum_{i=1}^{n} \dot{u}_i(\widehat{\theta})$$

and

$$\widehat{V} = \frac{1}{n} \sum_{i} u_i(\widehat{\theta}) u_i(\widehat{\theta})^T$$

- We use the sample variance to approximate V without knowing the distribution of the data
- The Sandwich estimator provides an estimate of the variance of $\hat{\beta}$ even when model assumption is violated.

Revisit the horseshoe crab data

• Check Example 7R notebook