Lecture 14

Generalized Linear Mixed
Effect Models



Today’s topics:

e GLMM: generalized linear mixed effect model

* Binomial response: logistic-normal models
* Poisson GLMM
 Marginal likelihood MLE for GLMM: Gauss-Hermite Quadrature

* Example: modeling correlated survey responses



LMM V.5. GLMM

For LMM, the form is
Yis = X3 B+ Zu; + €is

with u; and €;; random. With the typical assumption that E(u;) = E(e€;s) =
0, we would also have marginally

E(%S) = Xf.;

If we ignhore the random effects but use a regular linear model

* We underestimate the uncertainty in ﬁ
* Our estimates for  will still be consistent



LMM V.5. GLMM

However, for GLMM, the model is
I[E(yis | wi)] = X558 + Zu,

when the link function g is non-linear, marginally after integrating out the
randomness in u; we would have

g[E(yis)] 7é Xg.;

If we ignore the random effects but use a regular GLM model
* Our estimates for § will be biased
* The uncertainty in f will also be wrongly evaluated (likely under-estimated)

* The bias phenomenon holds for any missing covariates (not just missing
shared random effects)



GLMM for binary response:
Latent variable threshold model with random effects

We can view GLMM for binary responses as latent variable threshold
model with random effects

We assume that
P(yis =1|w) = F(X.8+ Zu;)

S

we assume there is a latent y*, where
y'a',*s — ij.;ﬁ + Zszuz + €is

where €;; are i.i.d. following some distribution (normal, logistic, ...)

and we have
1 ify;, >=0
Yis =

0 else



Example: probit model with random intercept

Latent continuous variable follow LMM:
ysz — XZ;‘:B + U; + €is) EiSNN(O)l)J uiNN(O) O-‘L%)

Conditional mean model for the observed ylS
P(ylS — 1|u1) = CI)(X IB +ul)

Marginal mean model for the observed y;,

N oy - o [ XisP
P(yis=1) = P(u; + €5 < XisB) = @ Jitol
O-u

P(yis=1) = IE(P(yLS = 1|u1)) fCI)(X B+ u; ) fQu)du; = (

*  f(u;): Gaussian density of u;

T
XiSB

/1"'05

|



Example: probit model with random intercept

T
X’is

g(P(yz's — 1)) — \/m

* This indicates that the marginal probabilities still follow a probit link,
but with

lgmarginal — p
J1+ 02

* |If weignore the random effects but fit a probit GLM, our estimates for
B will be biased by 1/4/1 + o2

*  We still underestimate the uncertainty in f™ar80al (35 e ignore the
fact that samples are correlated)



GLMM for binomial response

Logistic-normal model:
logit[P(yis = 1| us)] = XZB + ZLu,

where u;~N (0, Z,) and are independent

 Example: item-response models

Item response models: y;; the yes/no (correct/incorrect) re-
sponse of subject ¢ on question j

logit[P(yij | ui)] = Bo + Bj + i



Marginal GLM for Logistic-normal model

We have a similar approximation for the logistic-normal model if we only have
random intercept
Xis

V1+02/c?

9(P(yis = 1)) =

where c =~ 1.7
Why 1.77

e Afact: Hx) = ® (%) where H(x) is the CDF of standard logistic distribution
* Under logistic regression

POis = 1) = E(P(yis = 1[up)) = j H(XTB +w) fu)du,

XisB + ui> isB/1.7 Xis
~ ) i d j = ~ H
f ( 17 )/ <\/1+0 2/1. 72> <J1+a 2/1. 72>




Marginal GLM for binary GLMM

Whydoes the 8 in the random effect model typically larger than the
coefficient f™2r8nal iy the corresponding marginal GLM?

P(y=1)
1.0

— GLMM
- - Marginal model

0.0 X

Figure 9.2 Logistic random-intercept GLMM, showing its subject-specific curves and the
population-averaged marginal curve obtained at each x by averaging the subject-specific prob-
abilities.



Some properties

 Conditional independence

P(yi1 = a1, ,Yid, = ad, | Ui = ux) = P(Ys1 = a1 | u; = uy) -+ P(Yiq, = Qq, | Ui = uy)

e Latent class model

 Marginal correlation

COV(yés, yz’k) = E[COV(%'S, Yik | u?,)] + COV[E(yz's | Uz‘), E(yz‘k | Uz)]
=0+ cov[F(XéZ;ﬁ + Zg;uz-), F(Xg,;ﬁ + Zg,;uz)]

 Forrandom intercept Binary GLMM, the correlation between two
responses within the same group is still positive (same as LMM)

cov(Yis, Yik) > 0



Poisson GLMM

log[E(yis | ui)] = X8+ ZLu,

Equivalently,

Z u;, X128

Elyis | u;] = e e is

For the random-intercept model where Z;, = 1 and u; ~ N(0,02), we have

T 2
B(yi,) = X802

 For the marginal model, the link function is still log-linear

*  The coefficient gmarsinal — g except for the intercept

 Marginal GLM is not longer a Poisson GLM - over-dispersion due to the
random effect term (Agresti book Chapter 9.4.2)

var(y;s) = E(y;s) + (E()’is))z(ea"z‘ - 1)



Matrix form of the GLMM model

Similar to LMM, denote the model for the whole dataset
g(E[ylu]) = Xp + Zu

v X, (2 0 0 " o
Y= 7X: 7ZZ 0 0 0 y U = y €=

Number of groups is n

vi, Xi, Z;, U; are the response, covariates and random effects for group i
Can also allow multiple grouping structures (hierarchical or not)



Fitting GLMM

e Fitting GLMM is more challenging than fitting LMM as the marginal
distributions of the responses y;. typically do not have closed forms

 Typical methods
e Full Bayes approach MCMC
EM algorithm (not easy)
 Approximate the marginal likelihood numerically
 Generalized estimating equations (GEE): fitting the marginal model

The marginal likelihood

(8, Zuiy) = (4 5, % /fy|u S, du



Laplace approximation

Laplace approximation: the marginal density of our data has the form

AW dy ~ | el(wo)+31" (o) (u—uo)? g, — ol(uo) 27
1" (uo)|

Here ug is the global maximum of [(u) satisfying !'(ug) = 0. Laplace ap-
proximation can be used when u is multi-dimensional.

o l(uw) =log[f(ylu, B)] + log[f (u, Z,)] which is the log density of the
joint likelihood of y and u

Z" (y—E[y|u])
a(p)

*  For canonical link, [(u) = — > tu



Gauss-Hermite Quadrature

Gauss-Hermite Quadrature methods: approximate the integral by a weighted
sum

/h(u)exp(—uz)du R Z crh(sk)

e the tabulated weights {cx} and quadrature points {si} are the roots
of Hermite polynomials.

e The approximation is more more accurate with larger q. For more
details, read chapter 9.5.2.

e The approximated likelihood is maximized with optimization algo-
rithms such as Newton’s method



Generalized estimating equations (GEE)

A way to estimate the marginal model under dependence across
observations

* Forgroup i, the response is y; = (¥i1,***, Yin,)
* Denote the marginal means as u; = E(y;), marginal GLM:
g(pis) = XL:I;:

* Elements in y; are correlated due to shared random effects, we just
model a working covariance matrix (may not be true):

var(y;) = Vi(a) = v(y;)

e Responses across groups are independent



Generalized estimating equations (GEE)

* Generalized estimating equation for 3
n

D @ui/ 9B V() 3 — u) =0
=1

* Compare with estimating equation for § for independent responses

oL (Y —pi)zey 1 _
p1;(B,¢) = 0B; p3 a(p;, P) 9"(#0_0

()

 We also need a generalized estimating equation for scale parameters
 We can use moment equations as before

i)V @)y —w) =N-—p

* Typically, we assume the correlation matrix is shared across groups
* Can use Sandwich estimator to robustly estimate the variance of [



Example: modeling correlated survey responses

 Check Example9 R notebook
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