Generalized Linear Models

STAT34700, Winter 2025

Jingshu Wang

Course logistics

- Focus of this course:
 - Basic GLM concepts, assumptions of different models and interpretation
 - GLM from both parametric and semi-parametric perspectives
 - Mathematical derivations of statistical estimation, inference and diagnosis
 - Using GLM and R software to analysis real datasets
- Textbooks
 - Foundations of Linear and Generalized Linear Models by Alan Agresti
 - Extending the Linear Model with R (second edition) by Julian J. Faraway
 - E-sources available on UChicago library website

Texts in Statistical Science Extending the Linear Model with R Generalized Linear, Mixed Effects and Nonparametric Regression Models

Julian J. Faraway

Chapman & Hall/CRC

Course logistics

- Homework
 - Four homework: due at 11:59 CST on Fridays of week 2/4/6/8 at midnight.
 - Homework needs to be submitted online through Gradescope.
- Office hours
 - Instructor OH: Tuesdays 4:00 pm 5:00 pm in Jones 317
 - TAs OH: TBD (see updates on Canvas)
- Exams
 - Midterm: Thursday of week 6 (Feb 13) in class
 - Final: TBD
- Grading policy: Homework 20%, Midterm 40%, final 40%

Course logistics

- Use of AI tools
 - We encourage use of AI tools to help you learn course materials
 - We encourage use of AI tools to help you perform data analysis: data preprocessing, data visualization, guidance in choosing models and interpretation
 - We discourage use of AI tools to replace thinking and learning by yourself

- Al tools can be used in your homework
- Al tools are forbidden in exams

Lecture 1 Introduction to GLM concepts

Today's topics:

- Review of Gaussian linear models
- Two real data examples
- GLM concepts
- Reading: Agresti Chapter 1, Faraway Chapters 1, 8.1

Gaussian linear model

- Data points $(X_1, y_1), ..., (X_n, y_n)$ • Each $X_i = (x_{i1}, \cdots, x_{ip})$
- Gaussian linear model:

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- Can include intercept $x_{i1} = 1$
- Relationship between $\mu_i = \mathbb{E}(y_i | X_i)$ (also rewritten as $\mathbb{E}(y_i)$ treating X_i fixed) and X_i
 - Linear relationship: $\mu_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip}$
 - What if the relationship between μ_i and X_i is not linear?
 - Binary outcome, counts, ...
- Randomness of $y_i: y_i | X_i$ follows a Gaussian distribution
 - $y_i | X_i \sim N(\mu_i, \sigma^2)$ or equivalently $\varepsilon_i \sim N(0, \sigma^2)$
 - What if the distribution of y_i is not Gaussian?
 - What if the variance of $y_i | X_i$ is not homoscedastic and depends on X_i ?

Two real data examples

- Example 1: Male Satellites for Female Horseshoe Crabs (Agresti section 1.5)
- Example 2: Election counts (Faraway Chapter 1)
- Check Example1 R notebook

Components of a generalized linear model (GLM)

Data points (X_1, y_1) , ..., (X_n, y_n) independent observations

- Random components: randomness in y_i given X_i
 - Treat covariates (X_1, \dots, X_n) as fixed when performing statistical inference (same as in linear models)
 - Generalize y_i from continuous real values to binary response, counts, categories, et. al.
 - We will start with assuming y_i coming from an exponential family distribution.
 - Real valued response: Gaussian, Gamma (positive values)
 - Binary response: Bernoulli, Binomial
 - Counts: Poisson, Negative Binomial
 - Categorical response: Multinomial

Components of a generalized linear model (GLM)

Data points $(X_1, y_1), ..., (X_n, y_n)$

- Link function: how μ_i depends on X_i
 - μ_i linearly depends on X_i after a pre-specified transformation

 $g(\mu_i) = \boldsymbol{X}_i^T \boldsymbol{\beta}$

- linear model: $g(\mu_i) = \mu_i$
- model for counts: $g(\mu_i) = \log(\mu_i)$.
- model for binary data: $g(\mu_i) = g(p_i) = \log\left(\frac{p_i}{1-p_i}\right)$.

Components of a GLM

Data points $(X_1, y_1), ..., (X_n, y_n)$

- Linear predictors: $X_i = (x_{i1}, \cdots, x_{ip})$
 - X_i can include interactions, non-linear transformations of the observed covariates and the constant term
 - Having causal interpretations of the coefficients $\beta = (\beta_1, \dots, \beta_p)$ is challenging
 - More difficult than in linear regressions
 - β_j may not have a causal interpretations even if x_{ij} is completely randomized
 - Will discuss later in more details if we have time

GLM v.s. data transformation

- An alternative to GLM is to transform y_i in some $h(y_i)$ a linear regression model of $h(y_i)$ on X_i
 - Commonly used in practice

Disadvantages:

- If y_i are counts, usually take $h(y_i) = \log(y_i)$. How to deal with $y_i = 0$? How to transform binary or categorical data?
- need to find $h(\cdot)$ that can make the linear relationship reasonable as well as stabilizing the variance of $h(y_i)$.

Advantages:

- Easier to implement in practice
- Especially useful for models that are more complicated than a regression model such as in factor models / PCA