Lecture 4
Deviance analysis and model
diagnosis



Today’s topics:

* Deviance analysis
* Model checking with the residuals

* Reading: Agresti Chapters 4.4, Faraway Chapters 8.3-8.4



Deviance analysis in GLM

## Call:
## glm(formula = y ~ weight + factor(color), family = poisson(),
## data = Crabs)
## . .
44 Deviance Residuals: * In linear regression, we use
## Min 10 Median 30 Max
A \2 ~ —\92
:ﬁ ~2.9833 -1.9272 -0.5553 0.8646 4.8270 RB2_1_ > (yi — ) B > (i —79)
o . _ 32 . 77)2
## Coefficients: Zz (yz y) Zz(yz y)
## Estimate Std. Error z value Pr(>|z|)
## (Int t -0.04978 0.23315 -0.214 0.8309
(ntercert) To evaluate how well the
## weight 0.54618 0.06811 8.019 1.07e-15 **%* .
## factor(color)2 -0.20511  0.15371 -1.334 0.1821 model fits the data. We have
## factor(color)3 -0.44980 0.17574 -2.560 0.0105 * . . .
## factor(color)4 -0.45205 0.20844 -2.169 0.0301 * an analogy IN GLMI WhICh IS the
o deviance analysis.
## Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 "' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
## . 17)2
## Null deviance: 632.79 on 172 degrees of freedom — Z%(y?’ y)

## Residual deviance: 551.80 on 168 degrees of freedom ™~ Z
## AIC: 917.1 i
#i#t

## Number of Fisher Scoring iterations: 6

(yi — f1i)?



Definition of deviance

0 —b(6)
Consider density function f(y;6) = e o@ fo(y; #) at two values 6, and

0. Measure the “distance” between two distributions:

f(y;01)
f(y;02)

D(0:,05) = 2Eq, {log } — 9Ey, {y(01 — 02) — b(01) + b(62)} /()

= 2 [p1 (61 — 62) — b(61) + b(62)] /a(e)

Remember the 1-to-1 mapping between u and 8, we also write D(uq, u2) =
D(gﬂl ) 9#2)

e D(uy,u2) > 0 and the equality holds only when py = s

e Generally, D(u1, o) # D(us2, pt1)
e KL divergence: D(pu1,12)/2 = Notsymmetric
o If f is the normal density, then D(u1, uo) = (1 — po)?/0?



Residual deviance

e Saturated model: imagine the case that we collect an infinite number of
covariates, then we can perfectly fit the data and obtain fi; = y; for all samples.

* For a particular sample i, Deviance between the saturated model [i; = y; and
another model with u; (corresponding canonical parameter 6;)

f(y;01)
f(y;02)

D(6:,05) = 2Ep, {1og } — 9y, {y(6: — 62) — b(61) + b(62)} /a(9)

= 2 [p1(61 — 02) — b(61) + b(62)] /a(e)

Z[yi(HYi — 91') — b(gyz) + b(gi)]
D(y;, i) = @)

= —2log|f (i, 0:)/f 1, 0y,)]

* 0, = b)) () [Asu; =b'(6))]




Residual deviance

* Residual deviance (total deviance):
deviance between the fitted saturated model and the proposed model

:—QZIOg[ y%a /f(yza y?,)

Hyl- — (b’)_l(yi)
* Example: for Gaussian linear model D, (y, i) = Y;(y; — fi;,)* /o



Null deviance

* Null model: the linear model that only includes intercept. Thus,
Ui = U

* MLE estimate of u from the null model willbe i =y =}, y; /n

 Null deviance: deviance between the fitted saturated model and the null model

ZD(%‘,?)

e “R%” in GLM: . D_(y, 1)




Deviance analysis for nested models

(1)
Let 8 = (g(z)) where (1) € RP* and X = (X(l) X(Q)).

We call M) with
g(ui) = XV pW

a nested model of the full model M where

g(pi) = XB.

* Test for whether the nested model is already enough:
HO:B(Z) — O



Deviance analysis for nested models

5(2)
We call M) with

(1)
Let 8 = (B ) where (1) € RP* and X = (X(l) X(z)).

g(ui) = XV pW
a nested model of the full model M where
g(pi) = XB.

Let A be the MLE solution of the model M and (M be the corre-
sponding estimated expectations of y in the fitted model.

Then,

Dy (i, i) = Dy (y, 4M) = Dy (y, ) = —2 |L(BD) — L(B)]



Deviance analysis for nested models

Dy (ft, i) = Dy (y, i) = Dy (y, ) = =2 | L(BY) — L(B)]

 Deviance additivity theorem (Efron, Annals of Statistics 1978)
 Thisis the likelihood ratio between the full and nested models

* Likelihood ratio test:
If both p and p, are fixed, then asymptotically under Hy: % = 0

D, (y, ™M) — Dy(y,p) = X2,



Deviance analysis table for model comparisons

Say we partition our covariates as
X =(1,X1), X2, -, Xwn)

and X ;) € R% . We can sequentially add each partition of covariates into
the model (in some pre-determined order) and understand each partition’s
“relative contribution” with a deviance analysis table.

° B(j ) is the MLE solution of the GLM model with covariates X ) =
(]-aX(l)a X(Z)a T aX(g))

o /119 is the corresponding vector of expectations of y = (y1,-- -, yn) in
the fitted model.



Deviance analysis table in R

Model twice log-likelihood residual deviance difference df Compare with
BO) (null 2L(3O) D (y,i®) = ¥, D(y:, )
@(1) 2L(@(1)) D, (y, M) Dy (y, ') — Dy (y,aY)  dy X2,
/8(2) 2L(/8(2)) D-l-(y:ﬁ'@)) D+(y:ﬂ(1)) _ D-l-(yaﬁ'@)) d2 Xﬁz
B(J) 2L(B(J)) D+(yaﬁ(J)) D+(yvﬁ(J_1)) o D+(y,ﬂ('])) d.f X?lj

* Add variables sequentially to check if larger models are necessary

e Similar to the analysis of variable table in linear regression

* Typically the full model can not be the saturated model as df in a
saturated model is too large



Deviance analysis table

* R output for the election counts example in Lecture 1

> result.glm <- glm(cbind(undercountNumber, votes) ~ pergore + factor(rural) + factor(econ) +
factor(atlanta) + factor(equip), data = gavote, family = "binomial")

> anova(result.glm, test = "LRT")

Analysis of Deviance Table

BQUIE. e vOoung meimnod, [aRes Ve vaiues LEVER , Ud=Li (DpUIma SCan, Canral Count), wa=ri (CPLNmdl SCan, precinct Cournt,
“Paper","PUNCH" (punch card)
Model . b'l. I'IOITI'LCI]. , '|_ 1nk : 109'i.t econ: the economic level of the county, takes three values "middle”, “poor” and “rich”

parAA: the percantage of African Americans
rural: whethier the county is rural or urban
Re SpOﬂSE T C b'L nd(u nde rcou ntNumbe r, VOtES) atlanta: whather the county i part of the Atlanta metropolitan area
gore: number of votes for Al Gore
bush; number of votes for George Bush
Terms added sequential '|_y (-ﬁ_ rst to ]_as-t) other: number of votes for other candidates
votes: total vote counts
ballots: number of ballots issued

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 158 36829
pergore 1 5031.0 157 31798 < 2.2e-1b ***
factor(rural) 1 4197.2 156 27601 < 2.2e-16 *** . . . .
factor(econ) 2 7248.1 154 20353 < 2.2e-16 *** This analySIS is reliable Only when
factor(atlanta) 1  534.6 153 19818 < 2.2e-16 *** model assumptions for each
1 - kK k .
f?ftor(eqmp) 4  4150.5 149 15668 < 2.2e-16 correspondlng null hold
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ ©.05 ‘.” 0.1 ¢’ 1



Model checking with the residuals

* Asin the linear models, we can examine the residuals to help us
check whether a model fits poor or not, and whether there are any
outliers in the observations.

* Three types of residuals
* Pearson residual Y —

€; \/m ’U(/}Jz) — va-1}(:%)

e Standardized residual (similar as in linear regression)

€;
V1 — hy
where h;; is the ith diagonal element of the Hy defined equation
(4.19) of the Agresti chapter 4.4.5.

r; —



Model checking with the residuals

* Three types of residuals
* Pearson residual Y —

€; =
v(f;)

v(it;) = Var(y;)

e Standardized residual (similar as in linear regression)

€;
where h;; is the i¢th diagonal element of the Hy defined equation
(4.19) of the Agresti chapter 4.4.5.

r; =

 Deviance residual
2]y (6,. — 8;) — b(6,.) + b(6;
d; = v/ D(ys, fui) x sign(y; — fiq) :J 8y =00 = 2Oy ) + DO oy, —

a($)



Residuals examples

e For Gaussian linear model
e Pearson residual

e Deviance residual




Some intuition related to deviance residuals

|Il

Deviance residuals are considered more “normal” than Pearson

residuals

Consider deviance residual of i.i.d samples
R = sign(y — p)v/ D(§, p).

It has been shown that R converges to N(0,1) when sample size
n — oo, and has better third order accuracy than corresponding
Pearson residuals

You can check Appendix C of McCullagh and Nelder, Generalized
Linear Models for more math details



Some intuition related to deviance residuals

y ~ Gamma(k = 5,u = 5)

Deviance residual

sign(y — w~/ D(y, w)

Pearson residual
y—Uu

VV ()

T T T T T T T

inter= —-0.15 slope= 0.999
inter2= -0.104 slope2= 0.96

gq comparison of deviance residuals (black) with Pearson residuals (red);
Gamma distribution k = 1,0 = 1,n = 5; B = 2000 simulations.
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