Lecture 5
GLM computation and data
example



Today’s topics:

* GLM computation

* Example: building a GLM

* Reading: Agresti Chapters 4.5, 4.7



GLM computation

* Only discuss the case of a(¢) = 1 to simplify notation
* If a(¢) is not a constant, one can get B from the score equations first, and
then estimate ¢ from MLE with [ plugged in

Score equation:

L(B)=X"DV ' (y—p)=0

where

L(B) = Z[yﬁ@ — b(6;)] + const.

* Newton’s method

e Fisher scoring method

* |teratively reweighted least squares (IRLS): intuitive explanation for
Fisher scoring



Newton’s method

Second-order approximation of L([3)
L(B) ~ L(B®) + L(B®)T (8~ B9) + £(8 — BO)TE(B®) (8~ 5)

at tth iteration. If i(ﬁ(t)) = 0, then maximizing the second-order approxi-
mation is equivalent to solving

L(B) =~ L(BY) + L(BM) (B — M) =0

We have ) . '
B =B — L(B™) T L(B) /

* Root finding algorithm for solving L(ﬁ) =0 ey
* Local linear approximation of L(B) e "

Fal pd |



Newton’s method

Newton’s method is a general algorithm for optimizing twice-
differentiable functions.
Generally, it converges to the global maximum if L(f) is strongly
concave

* If g(+) is the canonical link, then L(f) is concave in

_L(B®) = XTwO X = xTyx = _E (f,(,@“))) = 0

a(¢)?
* If g(-)is a generallink, then L(f) is NOT guaranteed to be
concave in 3

« If —L(B®) is not non-negative, then step t does not
maximize the quadratic approximation (may find a saddle
point) and Newton’s method may be unstable.




Fisher scoring method

* Inlecture 2, we showed that —IE(Z;(,B)) > 0 forany S.

* Instead of using the Hessian L(B(®)) itself in the second order
approximation, we use its expectation

J® —E (i(,@(t))) - m F iy

. . L‘t) -
Each iteration becomes: J o

< W T r't;“’[ #Mtﬂ
_gt{:} ‘B(H'l) — ‘B(t) _ IL(B(t)) L{ﬁ )‘— ib v j )

—

* For the canonical link, Fisher scoring = Newton’s method
* For a general link, Fisher scoring works better in practice



iteratively reweighted least squares (IRLS)

 We can make a connection between the optimization for GLM and weighted least squares estimation.

* Think of GLM approximately fitting the line ith transformation on outcome:
9(y) ~X{ B + ¢

g(y;) may not be computable
e; should have different variances

Assume that after step t, we already have an estimate of u = (uq, >+, Up,) as u® =
() . ()
K15l
(t),

Perform Taylor expansion of g(y;) at p; :
9 = g (1) + ' (1) (yi - 1) = XTBO + g' (u?) () — ")

Define a ”temporary response

'—>Then Var [Z( )] 0 Var ly;] V—)Z = (l/l/l.gt))_1

)

Fit the linear regression Zi( )~ XI'B + e; with weighted least square



iteratively reweighted least squares (IRLS)

e Atthe t+1 th iteration, we solve the weighted least square m

XG0 a0 < = (1"

—-—-—-_._._,______1_____‘ K W {}2[‘61
which can be considered as a weighted linear regression W|thhobservat|ons z.( ) and
weight w; for each sample i. Ltrtij - 1L+:) O»L*y — C Hl)

Lflﬁ T Lﬂ
tf) (%) _ ‘3_[,) (t [2) T
« |RLS is equivalent tTﬁ\e tth step of Fisher scormgsatlsfy L “”)

xTw® x 5(t+1) XTw®xp® + XTp®yEN—1y — 1) ?Diﬂ o) s
H =X (-4
— xTw® [Xﬁ(t) + (DY L(y — u“))]
— xXTw® ()

+ Weight matrix W ~ Var (z(t))_



Example: Building a GLM

* Check Example2 R notebook
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