Lecture 6
GLM for binary data:
introduction



Today’s topics:

* Binary / Binomial data model
* Data input
 Link functions
* R example

* Reading: Agresti Chapter 5.1,5.6, Faraway Chapters 2.1, 3.1, 4.1-4.2



Binary / binomial data model

If the observation y; is binomial
y; ~ Binomial(n;, p;)

and probability function:

fys) = (Zz) pY (1l —p)Mi7 Y = (Z;) (1 fipi)yi (1 —p;)™

If n; =1, then y; is a 0/1 binary data point (follows a Bernoulli distribu-
tion).

* Link function: g(p:) = X8

* |ogistic regression: log(lﬁ—;i) =X/'p



Data input for binary model

If X; are categorical variables, then we may have samples with the same Xi and we can
group them together

* ungrouped data: each n; = 1 and some samples have the same X;, thus they share

the same p;
* agrouped sample y; for group k where all observations in the group share the same
X;
* Define n;, as the number of binary observations
 The grouped response for group k is

Jk = Y ¥; ~ Binomial(ny, py)
1€1;,
* The grouped data follows the Binomial distribution because we assume that the
samples are independent within each group



Likelihood for grouped and ungrouped data

e Let N =), ni The likelihood for the ungrouped data is:
f(yla Y2, ayN) — szz(l — pz’)l_yi
k
The likelihood for the corresponding grouped data is:

.. . n ; i
F@, 82,5 0k) =] | ( ’“)pi’“(l — pr)"
) Yk
* The likelihood is not the same between the grouped data and
ungrouped data. However, the log-likelihood function only differs by a
constant, thus the GLM solution does not change.



Link function for binary / binomial GLM

The expectation of each sample is E(y;) = n;p; where n; is a known con-
stant. Thus we define the link function as a function of p;

Q(Pz') — X;,Fﬂ

Equivalently,
pi=g (X' B) €0,1]

* |If g is a one-to-one mapping and continuous function, then g~ should
be monotone.

* one natural choice of g~1 is to make it as a cdf of some distribution.

* Denote F(z) = g~1(2) as some cdf function

. let € ?,Evd F()



Latent variable threshold models

« Denote F(z) = g~1(2) as some cdf function

Let €; 3% F(:)
* Then
pi=F(X/B) =P <X/ B)=P(X/B—¢>=0)

* This is called a latent variable threshold models and X/ § — €; are
the “latent variables”

* |t does not make any essential modeling difference choosing the
cutoff to be 0 or any other value t



Latent variable threshold models

T
Ei™) = Bo+ By X4

X

Figure 5.1 Threshold latent variable model, for which we observe y, = 1 when underlying
latent variable y! > 7.



The probit link

e The probit link: F(z) is the cdf of a standard Gaussian distribution
pi=P(X/B—¢>=0)=P(X/B+¢ >=0)

where €; ~ N(0,1). Let the hidden variable be y¥ = X! 8 + ¢;, then
it goes to the definition of the probit link that some of you may be
more familiar with:

1 ifyr>=0

Y; = <
k0 else




The logit link

e The logit link: F'(z) is the cdf of a standard logistic distribution

=z

F(z) = e

— The link function is called the logit link: g¢(p;) = logit(p;) =

log ( 12;% )

— The logit link is the canonical link of the Binomial distribution




The identity link

e The identity link: F(z) is the cdf of a uniform [0, 1] distribution and
pi = X; B

— The identity link corresponds to a uniform cdf only when X! 3 €
0, 1] for all samples.

— Because of the range issue, when using R to solve a binomial
GLM with identity link, there can often be numerical problems

(such as the error we saw in the earlier data example in Section
1.4, Data Example 1).



The log-log link

* Both probit and logit links assume a symmetric €; around 0:

F(x) =1-F(—x) & g(p) = —g(1 —p)
* A corresponding restriction is that the response curve is symmetric at 0.5
* We should use some other link functions (or F) if this assumption is severely violated

e The log-log link: F(z) is the cdf of a standard double exponentla.l

distribution (Gumbel distribution)

z

F(z)=e"® ol
— The link function is called the log-log link:

g9(pi) = —log[—log(ps)] = X' B«

* With the log-log link, p; approaches 0 sharply but approaches 1 slowly



The complementary log-log link

* With a complementary log-log link, p; approaches 1 sharply but approaches 0
slowly

g(p) = log[—log(1 —p)] = X{ B

‘/ﬁ<0

ﬁ>0\‘

0 —
X

Figure 5.4 GLM for binary data using complementary log—log link function.



R data example for binary / binomial GLM (part )

 Check Example3 1 R notebook
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