Lecture 6 GLM for binary data: introduction

Today's topics:

- Binary / Binomial data model
 - Data input
 - Link functions
 - R example
- Reading: Agresti Chapter 5.1,5.6, Faraway Chapters 2.1, 3.1, 4.1-4.2

Binary / binomial data model

If the observation y_i is binomial

 $y_i \sim \text{Binomial}(n_i, p_i)$

and probability function:

$$f(y_i) = \binom{n_i}{y_i} p_i^{y_i} (1 - p_i)^{n_i - y_i} = \binom{n_i}{y_i} \left(\frac{p_i}{1 - p_i}\right)^{y_i} (1 - p_i)^{n_i}$$

If $n_i = 1$, then y_i is a 0/1 binary data point (follows a Bernoulli distribution).

• Link function: $g(p_i) = X_i^T \beta$

• logistic regression:
$$\log(\frac{p_i}{1-p_i}) = X_i^T \beta$$

Data input for binary model

If X_i are categorical variables, then we may have samples with the same Xi and we can group them together

- ungrouped data: each $n_i = 1$ and some samples have the same X_i , thus they share the same p_i
- a grouped sample \tilde{y}_k for group k where all observations in the group share the same X_i
 - Define n_k as the number of binary observations
 - The grouped response for group *k* is

$$\tilde{y}_k = \sum_{i \in I_k} y_i \sim \text{Binomial}(n_k, p_k)$$

• The grouped data follows the Binomial distribution because we assume that the samples are independent within each group

Likelihood for grouped and ungrouped data

• Let $N = \sum_{k} n_k$ The likelihood for the ungrouped data is:

$$f(y_1, y_2, \cdots, y_N) = \prod_i p_i^{y_i} (1 - p_i)^{1 - y_i}$$

 $= \prod_k p_k^{\tilde{y}_k} (1 - p_k)^{n_k - \tilde{y}_k}$

The likelihood for the corresponding grouped data is:

$$f(\tilde{y}_1, \tilde{y}_2, \cdots, \tilde{y}_K) = \prod_k \binom{n_k}{y_k} p_k^{\tilde{y}_k} (1 - p_k)^{n_k - \tilde{y}_k}$$

• The likelihood is not the same between the grouped data and ungrouped data. However, the log-likelihood function only differs by a constant, thus the GLM solution does not change.

Link function for binary / binomial GLM

The expectation of each sample is $\mathbb{E}(y_i) = n_i p_i$ where n_i is a known constant. Thus we define the link function as a function of p_i

$$g(p_i) = X_i^T \beta$$

Equivalently,

$$p_i = g^{-1}(X_i^T \beta) \in [0, 1]$$

- If g is a one-to-one mapping and continuous function, then g⁻¹ should be monotone.
- one natural choice of g^{-1} is to make it as a cdf of some distribution.
- Denote $F(z) = g^{-1}(z)$ as some cdf function

• Let
$$\epsilon_i \overset{i.i.d.}{\sim} F(\cdot)$$

Latent variable threshold models

- Denote $F(z) = g^{-1}(z)$ as some cdf function
 - Let $\epsilon_i \overset{i.i.d.}{\sim} F(\cdot)$
 - Then

$$p_i = F(X_i^T \beta) = \mathbb{P}(\epsilon_i \le X_i^T \beta) = \mathbb{P}\left(X_i^T \beta - \epsilon_i > = 0\right)$$

- This is called a latent variable threshold models and $X_i^T \beta \epsilon_i$ are the "latent variables"
- It does not make any essential modeling difference choosing the cutoff to be 0 or any other value τ

Latent variable threshold models

Figure 5.1 Threshold latent variable model, for which we observe $y_i = 1$ when underlying latent variable $y_i^* > \tau$.

The probit link

• The probit link: F(z) is the cdf of a standard Gaussian distribution

$$p_i = \mathbb{P}\left(X_i^T \beta - \epsilon_i >= 0\right) = \mathbb{P}\left(X_i^T \beta + \epsilon_i >= 0\right)$$

where $\epsilon_i \sim N(0, 1)$. Let the hidden variable be $y_i^* = X_i^T \beta + \epsilon_i$, then it goes to the definition of the probit link that some of you may be more familiar with:

$$Y_i = \begin{cases} 1 & \text{if } y_i^{\star} >= 0\\ 0 & \text{else} \end{cases}$$

The logit link

• The logit link: F(z) is the cdf of a standard logistic distribution

$$F(z) = \frac{e^z}{1 + e^z}$$

- The link function is called the logit link: $g(p_i) = \text{logit}(p_i) = \log\left(\frac{p_i}{1-p_i}\right)$

- The logit link is the canonical link of the Binomial distribution

The identity link

- The identity link: F(z) is the cdf of a uniform [0,1] distribution and $p_i = X_i^T \beta$
 - The identity link corresponds to a uniform cdf only when $X_i^T \beta \in [0, 1]$ for all samples.
 - Because of the range issue, when using R to solve a binomial GLM with identity link, there can often be numerical problems (such as the error we saw in the earlier data example in Section 1.4, Data Example 1).

The log-log link

Both probit and logit links assume a symmetric ϵ_i around 0:

$$F(x) = 1 - F(-x) \Leftrightarrow g(p) = -g(1-p)$$

- A corresponding restriction is that the response curve is symmetric at 0.5
- We should use some other link functions (or F) if this assumption is severely violated
 - The log-log link: F(z) is the cdf of a standard double-exponential distribution (Gumbel distribution)

$$F(z) = e^{-e^{-z}}$$

- The link function is called the log-log link:

$$g(p_i) = -\log[-\log(p_i)] = X_i^T \beta$$

• With the log-log link, p_i approaches 0 sharply but approaches 1 slowly

The complementary log-log link

• With a complementary log-log link, p_i approaches 1 sharply but approaches 0 slowly

 $g(p_i) = \log[-\log(1-p_i)] = X_i^T \beta$

Figure 5.4 GLM for binary data using complementary log–log link function.

R data example for binary / binomial GLM (part I)

• Check Example3_1 R notebook