Lecture /
GLM for binary data:
computation and applications



Outline

« Residual deviance for grouped and ungrouped data
» Goodness of fit test

* Fitting logistic regression and the infinite estimates

* Some applications of Binary GLM

 Binary GLM example (part II)



Score equation in logistic regression

For logistic regression, as the logit link is the canonical link, the score
equation 1is:
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We have derived that as n — oo
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where W = D?V ! is a diagonal matrix. For logistic regression where the
logit link is the canonical link, we have W = V so
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Residual deviance is different for grouped and
ungroup data
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* Forthe ungrouped data, each observation is y;
* The saturated model is p; = y; for each individual sample
* For the grouped data each observation is y,
* The saturated model is p;,, = ¥y, for each group (so that p; for each
individual sample in the saturated model is y,, instead of the binary y; )



Residual deviance is different for grouped and
ungroup data

Dy (y,2) = )  D(yi,nips)

= =2 Z log :f(yz’, éz)/f(yia eyi)]

P N et ) s
= QZlg (yz/n%)y (l_y%/n%)n yt-]

=2 Z yilo ~yi)log - z—_nf;ai
’ Much smaller
* For the grouped data /
y Nk — Yk
D, (y, i) =2 ’yklog +2 (e — Uk 108 -

* For the ungrouped data
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Residual deviance for grouped data

 The group level data can be presented by a K X 2 count table, where each
row is a group, and the two columns store the number of success y, and the
number of failure n;, — y; respectively in each cell.

* Residual deviance for the group data
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* When the number of groups K is fixed while the total samples size N =
Y.k Nk is large, then the residual deviance is the likelihood ratio satisfying

G® =D (y, i) = Xk —p



Goodness-of-fit test of the fitted model

* Residual deviance for goodness of fit

G*=Di(y, ) & x%_,

* Pearson’s statistics for goodness of fit
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Comparison between G4 and X*

* X? =Y e
sum square of Pearson residuals of grouped data.

* G? =Y, d;
sum square of deviance residuals of grouped data.

* Some comparison between X? and G*
* X? may perform better for small counts
* X? may be more robust to model mis-specification
* G? may be more powerful for large counts



Infinite parameter estimates in logistic regression

> x <- ¢(1,2,3,4,5,6); vy <-¢(1,1,1,0,0,0) # complete separation
> fit <- glm(y ~ x, family = binomial (link = logit))
> summary (fit)
Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 165.32 407521.43 0 1 # x estimate is
X -47 .23 115264 .41 0 1 # actually -infinity

Number of Fisher Scoring iterations: 25 # unusually large
> logLik (fit)
"log Lik.’ -1.107576e-10 (df=2) # maximized log-likelihood = 0

Or sometimes one may see the following warning message:

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred



Perfect (complete) separation

There exists 5 such that if
X!Bs > 0theny; =1 g
otherwise y; = 0.

1' 2 3 4 5 6
X

Figure 5.3 Complete separation of explanatory variable values, such as y = 1 when x < 3.5
and y = 0 when x > 3.5, causes an infinite ML effect estimate.

We proof that the MLE for 3 does not exist. Let n; = kX! 3.
When k£ — oo, then

pi = 1 + kX7 Bs

ek X Bs 1 if XI'B8s >0, or equivalently y; = 1
0 else

Thus, g—g — 0 if & — oo so the solution of the score equation is

infinite. In other words, the MLE does not exist.



Quasi-complete separation

There exists ¢ such that if

X! Bs > 0theny; =1,
X!Bs < 0theny; =0,

X!'Bs=0theny;, =0or1

We can also show that the MLE for 8 does not exist (Albert and
Anderson, Biometrika 1984). Any value B can be decomposed as
B = Bs +~. Denote By = kBs + v Let m; = kX! Bs + XIv. When

k — oo, then
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1 if X;'B8s >0

0 if XI'p, <0
T

\ ;Z;;‘v if X78, =0

This tells us that for any £, we can find 8, with large enough k so
that the log-likelihood L(Bx) > L(B), so the log-likelihood function

L(-) does not have a finite maximum point. In other words, the MLE

does not exist.



2 X 2 table

When Both the X; and y; are binary, the grouped data can be represented
by a 2 x 2 table.

e Number of grouped samples: 2.

e Number of total ungrouped observations: N = nj 4+ ng (Table 5.2 of
the Agresti book)

e Assume that (X;,y;) are i.i.d. Odds ratio (OR) for the response
variable Y':

CP(Y=1|X=1)/P(Y =0|X =1)

OR_P(Y:1|X=0)/P(Y:O|X=0)

e Interpretation of the coefficient 8, in the binary GLM with logit link:

logit(p;) = Bo + B1X;
e’ = OR

Event
Yes No
Yes a b
Exposure
P No C d




Prospective V.S. retrospective design

 We want to know the effect of a risk factor (say smoking) on an outcome (say
lung cancer)

* Prospective design: randomly select smokers and non-smokers from the
population and observe whether they will develop cancer in the future.
* Wecancompare E(Y =1|X =1) with E(Y =1|X = 0)
 Drawbacks: the study takes a long time; lung cancer is a rare disease, may
observe very few cancer samples.

e Retrospective design (case-control study): We randomly select some samples
from patients who develop cancer and some samples from healthy controls.
Then, we check whether the person has been a smoker or not.

* Onlycompare E(X = 1Y = 1) withE(X =1|Y =0)
* The study takes a shorter time, and we can obtain enough cancer cases.



Case-control study

Why is the case-control study popular?

op_ B =1|X=1/P(Y =0|X =1)
T P(Y=1|X=0)/P(Y =0|X =0)
CP(X=1|Y=1)/P(X=0|Y =1)
TPX=1|Y=0)/P(X=0]Y =0)

We can also include other covariates X:

PY=1|X=1,X=2)/P(Y=0|X=1,X =xz)
PY=1|X=0,X=2)/P(Y =0|X=0X=xz)
 PX=1|Y=1,X=1)/PX=0|Y=1,X =1z
CP(X=1|Y=0,X=2)/P(X=0|Y =0,X =2)

OR |X’::c

Thus, we can study estimate the odds ratio of the risk factor from case-
control studies.

Thus, building the logistic regression using case-control study samples is
the same as building the model using prospective samples:

e’ =OR |z_,



Classification

Table 5.1 A Classification Table

Prediction y

1

Cell counts in such tables yield estimates of sensitivity =
P®=1]|y=1)andspecificity =PH =0 |y =0).

* Sensitivity (recall, true positive rate, tpr): P(y = 1|y = 1)
 Specificity: P(y =0y =0)
* False positive rate (fpr): 1 - specificity=P(y = 1|y =0)



ROC curve

P(Y=1ly=1)

Good

Poor

P(y=1ly =0)

Figure 5.2 ROC curves for a binary GLM having good predictive power and for a binary
GLM having poor predictive power.



R data example for binary / binomial GLM (part 1)

 Check Example3 2 R notebook
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