Lecture 9
GLM for ordinal responses



Today’s topics:

* Ordinal response models
* Examples of multinomial GLM



Ordinal response

Say the response (disease status of the sample) is one of these 4 categories:
healthy, mild, moderate, severe. How do we build a model to predict the
response / understand the covariates’ effect?

e The categories have an order
e One naive solution: ignore the categorical nature of y

— Encode y; = 1,2,3,4 as a score for healthy, mild, moderate,
severe. Build a linear regression model

yi =X B+e

— Usually no clear-cut choice for the scores: age groups 0-18, 18-34,

34-55 and 55+

— A more detailed comparison between this OLS and the model
will be introduced later



A latent variable motivation to model ordinal response

* Assume that there a continuous latent variable y;" that satisfy
yi = X, B+

where €; are i.i.d. with cdf function F(-)
 Assume that the observed response satisfy

yi =k ifogp_1 <y <

where —co=ag <oy <... <a. = oo are cutoff points

e Then we have
P(y; < k)= P(y; < ax) = F(ax, — X{ B)

7 —



A latent variable motivation to model ordinal response
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Figure 6.2 Ordinal measurement and underlying linear model for a latent variable.



Cumulative logit/probit models

P(y; < k) = P(y; < o) = F(og — X; B)

* Take F(-) to be the cdf of a standard logistic/Gaussian distribution,
we get the cumulative logit/probit models

* For identifiability, X; here does not include the intercept term

* We assume constant § across categories

 Another equivalent way to define the cumulative logit model

. pPi1 + - 1 Dik T
logit|P(y; < k)| =lo = ap + X;
git|P(y; < k)] 8 e £t pn B

where 8 = —8.



Proportional odds

logit[P(y; < k|X; = u)] — logit|[P(y; < k|X; = v)]
Py < k| Xi = u)/P(y: > k| X; = u)

P(y: < k| Xi =) /P(yi > k|X; = v)
)"}

= log

So the cumulative odds ratio between two samples keeps the same for all k.
 The cumulative odds ratio is proportional to the distance between u and v

e Settings are stochastically ordered on the response
fX'p > XlT,E then we have P(y; < k) = P(y;» < k) for ALL k.



Proportional odds

X

Figure 6.1 Cumulative logit model with the same effect of x on each of three cumulative
probabilities, for an ordinal response variable with ¢ = 4 categories.



Fitting cumulative link model

We assume that P(y; < k) = F(a; + X7 8), then the likelihood for un-
grouped data is

H(HP ) H{H[P(yigk)_P(yiSk_l)]yék}
k=1

1=1 \k=1 =1
The log-likelihood is

Cc

N
=33 valoglF (o + X[ B) = Flaw-s -+ X/ B)
1=1 k=



Fitting cumulative link model

and the score equation for ,BJ is

ii%k o flok + XFB) — flaw—r + XTB) _

85; = Flax+XTB) — Flag—1 + X['B)
for o, is
oL _ i yirf (o + X['B) _ Vi k+1f (o + XF B) _
Oar i | Flaw +X[B) — Flak—1+X[B)  Flagsr +X['B) — Flaw + X[ B)

The computation is complicated, but we can still use Fisher-scoring/Newton’s

method to solve it and we can still calculate the asymptotic variances of
and each &y.



Limitation of the cumulative link models

e Settings are stochastically ordered:
fX'p > XlT,,E then we have P(y; < k) = P(y; < k) for ALL k.

* Whenc = 4, the model can not allow the probability of each

ordered category to be (0.3,0.2,0.2,0.3) for one sample and
(0.1,0.4,0.4,0.1) for the other sample.

 More flexible model: replace ﬁ with ﬁk

- Pi1 + T Dik T 5
logit|Pr(y; < k)| = log = ay + X; B
Pl ) Dik+1 T T Dic

* We can perform likelihood ratio test to check if the more flexible
model is necessary



Comparison with OLS

Disadvantages of modeling ordered categories using a linear model:

 Usually no clear cut for the numerical scores

* Linear model does not allow for the measurement error in
discretization

 From the linear model you can not get estimated probabilities of each
category for a particular sample

* Linear model ignores that the variability in each category can be
different



A simulation example

y; = 20+ 0.6z; — 40z; + ¢;

.1.d.

where z; “%" Uniform[0,100], z; “%<" Bernoulli(0.5) and ¢; "< N (0, 100).
Set a1 = 20, agy = 40, g = 60 and a4 = 80.
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R data example for ordinal response

e Check Example 4 2 R notebook
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