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Outline

* SCATAC-seq technology

* SCATAC-seq preprocessing and quality control
e Peak calling
* Filtering low-quality cells
* Doublet detection
* Barcode multiplets

* Dimension reduction and feature transformations



Epigenomics and scATAC-seq

Organization of Eukaryotic Chromosomes

DNA is packaged inside the nucleus
helix | « Make DNA fit into the nucleus and stable
* Controls the activity of DNA: inactive if tightly packed

* The basic unit is called nucleosome: DNA wrapped around 8
histone proteins

DNA wrapped
around histone

nucle osome “
= ' * Epigenomics:

Nucleosomes
coiled into a
chromatin
fiber

* Modification of DNA / histones that does not alternative
the
DNA sequence

* Understand regulation of gene expression

Further
condensation
of chromatin

* Single-cell ATAC-seq:

* measure the open regions of DNA
(chromatin accessibility)

e Understand how nucleosome positioning regulates
gene expression (transcriptional activation)

Duplicated
chromosome

https://courses.lumenlearning.com/wm-
biology1l/chapter/reading-chromosome-structure/



How is chromatin accessibility influenced?
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https://www.sc-best-practices.org/chromatin_accessibility/introduction.html
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Transcriptional factor
(TF):

e proteins that help
turn specific genes
"on" or "off" by
binding to nearby
DNA

Promotor: a region of
DNA upstream of a gene
where relevant proteins
such as TF bind to initiate
transcription

Enhancer: region

of DNA that can be
bound by proteins to
increase likelihood of
transcription



ATAC-seq for measuring chromatin accessiblity

ATAC-seq (Assay for Transposase-Accessible Chromatin with high-
throughput sequencing) (Buenrostro et. al. Nature Methods 2015)
e chromatin is fragmented and simultaneously tagmented
with sequencing adapters using the Tn5 transposase
 NFR fragments: represent the open chromatin
nucleosome-bound fragments: reflect nucleosome position
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* Fragment length distribution

Normalized read density x 107

* Compared with other techniques, ATAC-seq requires few
starting materials and less preparation time
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sCATAC-seq by 10x Genomics (satpathy et. al., 2019)

* Nuclei are transposed (chromatin fragmented and simultaneously tagmented) in bulk before

isolated in a suspension
* Transposed DNA are amplified inside each nuclei first before PCR amplification

Linear Pool
Collect amplification  Remove oil
/D [ e )
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Transposition of \_/ Single nuclei Barcoded accessible
nuclei in bulk GEMs DNA fragments
Chromium Single Cell ATAC Library No UMI:
78 * One position on one chromatin can onIy
i5: ample
5 ReadIN_ . index be on/off
L . I . .
* One nuclei only have two copies of one
[ . I
P5 10x  ReadN nsert < Read2n Read 2N chromosome

* Can easily remove duplicated fragments



How does scATAC-seq data look like?
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* scATAC-seq preprocessing steps (Chen et. al.
Genome Biology 2019)

* scATAC-seq peak by cell matrix is extremely
sparse (much sparser than scRNA-seq)
* DNA only have two copies per cell
 1-10% detection rate of accessible peaks
e 10-20 times feature size than scRNA-seq
* Can have more than 2 fragments in a peak
before amplification
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Peak calling for scATAC-seq

* Peak calling methods have been developed for a long time for other types of
epigenetic data

e Various ways to detect peaks
* Detect peaks based on a reference bulk ATAC-seq data
* Detect peaks based on pseudo-bulk ATAC-seq data (ignore cell barcode to create
a “bulk” dataset)
* Perform clustering first and perform calling for each cluster of cells
(SnapATAC, Fang et. al., Nature communications, 2021)
* Aim to identify small peaks that only appear in small cell types
* To perform clustering without peaks
* Create cell-by-bin count matrix
* Segment the genome into bins (5kb size by default)
e Count the number of read in each bin and binarize the matrix

* One common method to detect peaks in MACS2



MACS?2 (Zhang et. al. Genome Biology, 2008)

R A . -
. . . sequenced section ense stran
e Can work with both single-end reads and paired-end reads (‘tag” or ‘read’) ChIP enriched fragments

3
5

length less than 100bp)

* Or use all reads and treat them as single-end m
* Need to recenter the reads NXOFE

* SCATAC-seq is paired-end, call peaks only use NFR fragments (fragment WQ

Antisense strand
ChlIP enriched fragments

\/\/\/\W r\seﬂque’pced“secti"cm
align to l (“tag” or “read”)
. reference genome
* Core steps when analyzing scATAC-seq -
. . sense tags /
* Remove duplicate reads: reads at the exact same location @ ;
* Recenter the reads setting d = 200 @
. i antisense tags
* Peak detection T

» Slide 2d window across the genome to find peaks

* Given any window of the genome, assume number of reads follow a
Poisson distribution with mean Aj,¢4] if there is no peak (null)

Aocal = Max(Apg, Ask, A10k)

 Compute a p-value for each window, selection all windows with small
p-values (107°)

* Merge nearby peak regions and identify peak center as the “summit”
— extend each read from its center by d so that reads can pile up



Quality control for scATAC-seq

e Detect low-quality cells

* General metrics: total fragment counts, number of features per Dot of ANA cOmererast
N

cell R A
* Transcription starting site (TSS) enrichment ﬂ
e scATAC-seq fragments should be enriched near the TSS ST =
e Select a random subset of TSS — e — v —
* For eachTSS, compare number of overlapping a5 e\elm,_h,, o J\mm st dinds

fragments (+- 2000bp window) with nearby windows to
calculate an enrichment score

Pronmotev

* Doublet detection

* Much more challenging as the scATAC-seq has much higher
sparsity

* |f we use similar idea as in scRNA-seq, need to aggregate
correlated features (a suggestion of number of features: 25,
https://www.sc-best-practices.org/chromatin accessibility/quality control.html)

* Adifferent idea: At most two fragments detected per location in
a single cell



https://www.sc-best-practices.org/chromatin_accessibility/quality_control.html

AMULET (Thibodeau et. al.,, Genome Biology 2021)

Sites with >2 Reads

A regular cell with a
diploid genome has two
@ chromosomes that can
be fragmented by Tn5
transposase

Count overlaps
with more than two
fragments
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Cells/Nuclei

A regular fragment
pattern. There can be
@ maximally two
fragments at the same
position
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* Requires a relatively large
library size
e Can identify homotypic

2 X doublets

Doublets can results in
an irregular fragment
@ pattern. We observe
more than two
fragments at the same
position.




Barcode mu |t|p|ets (Lareau et. al., Nature Communications 2019)

* Though the bead softgel follows super Poisson a Barcode multplets
distribution in 10X genomics, there can still be barcode 0 beads | bead 24 bead oligos 2+ beads®
mU|tip|6tS Barcode 1

e About 5% barcode multiplets in 10X scATAC-seq (80% Bead >}€<
single-bead droplets) Q Q e 9
. . . Cell Cell e
* Barcode multiplets in scRNA-seq can be challenging to
detect Y ¥
Cell dropout Single-cell data
. . b
e Detect barcode multiplets in scATAC-seq
 Based on molecular diversity of Tn5 insertion sites
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SCATAC-SGC] count matrix (Martens et. al. Nature Methods 2024)

* Peak * cell count matrix

e Count number of reads or
number of fragments that
overlap with peak region

e Should count number of
fragments to avoid bias

* For a specific region, number of
fragments follow Poisson
distribution across cells

e Binarize the peak * cell matrix:
 Entry =1if there are any
fragments detected overlap with
the peak region
e Binarization is shown to hide
guantitative information and not
helpful

’//
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to open chromatin

@ Fragmentation and tagging
(tagmentation) by Tn5
transposase

PCR amplification and
sequencing

@ Alignment of read pairs

@ Peak calling on multiple cells

Count read ends or
fragments overlapping a
peak region per cell
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scATAC-seq normalization

* Normalize by total number of fragments per cell

* TF-IDF matrix transformation (Cusanovich et. al., Cell, 2018)
* Normalize by gene and cell at the same time
Term Frequency (TF) - Inverse Document Frequency (IDF)
TF: total fragment normalization per cell TF =GC;/F;
* Fj:total number of fragments in cell j

IDF: log(1 + N/N;) N; total counts per peak across all cells
* Canalso directly use N/N; as IDF (Stuart et. al., Nature Methods 2021)

TE-IDE TF-IDF =TF x IDF
* (Can take log transformation if needed

Cell Ranger - @ ijs {WJ @ SVD \\D?D/)— @

Graph-based
ATAC Single cell counts Filtered counts normalization Normalized counts SVvD clustering Graph-based

clusters

ood /
Single cell t-SNE /

QA/QC t-SNE

SVD after TF-IDF: latent semantic analysis AP



CiSTOpiC (Gonzalez-Blas et. al., Nature Methods, 2019)

* Core steps:
* Binarize the count matrix
e Topic modeling using Latent Dirichlet Allocation (LDA, Blei et. al., JMLR 2003)
* Generative process

1. Choose N ~ Poisson(§).
2. Choose 6 ~ Dir(at).

3. For each of the N words w,:

(a) Choose a topic z, ~ Multinomial(0).
(b) Choose a word w,, from p(w, | z,, B), a multinomial probability conditioned on the topic
Zy.

e Each position in a document independently choose a topic
e Each topic has a topic-specific Multinomial distribution of words

Creation of

* Solve the model: oA Node Topcs
. . . . Collection of ‘ @ @
Gibbs sampling / variational Bayes / text documents priset-boed O®
Expectation-propagation . 1
‘ Baiasee. = Q_“O_‘Q_“ Frequency of topics
a ] z w N per document
I M
MR
Dirichlet D0cument-topic Ot\):/((e):\‘ljed H_T_
parameter distribution Number of D1 D2 D3 D4

Word-topic documents
assigment



CiSTOpiC (Gonzalez-Blas et. al., Nature Methods, 2019)

Core steps:
e Binarize the count matrix
e Topic modeling using Latent Dirichlet Allocation (LDA, Blei et. al., IMLR 2003)
* Treat each cell as a document and each region (peak) as a word
* Use Gibbs sampler to iteratively optimize two probability distributions:
e Region-topic distribution: the probability of a region belonging to a topic
* Topic-cell distribution: the contribution of a topic within a cell

* Determine the hyperparameters
* Number of topics K: fit a model with different K, find the smallest K that stabilize the

log-likelihood
e Dirichlet distribution hyperparameters
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Ped KV (Gonzalez-Blas et. al., Nature Methods, 2019)

A
* Visualization e Technical effect removal * Imputation
* Clustering * Batch effect correction * Differential accessibility
* Integration
sCATAC-seq input .
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ped kVI (Gonzalez-Blas et. al., Nature Methods, 2019)

* (Martens et. al. Nature Methods 2024) finds that using the Poisson model with
counts without binarization and use observed region-specific and cell-specific
factors instead of estimated factors can improve performance of peakVi
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Gene activity score

* Transfer the peak * cell matrix to gene * cell matrix
* Aggregate peaks around promoter region of a gene

* Cicero (Pliner et. al. Molecular Cell, 2018)
e Overall measure linked to each gene k using peaks that
belong to proximal or distal sites of gene TSS

"
Rki = ZpEP Zjer Aji Y. = + Api

Upk
Dp 7P

* Uy peak-peak co-accessibility score

* Signac (Stuart et. al. Nature Methods, 2018)
e Count number of fragments overlapping the gene body and a
2-kb upstream region for each gene in each cell

* Apply scRNA-seqg methods on gene activity score matrix

DISTAL PROMOTER

ENHANCER REPRESSOR

ENHANCER CORE PROMOTER

PROXIMAL PROMOTER



Transcriptional factor activity matrix

ml:(:ll..\’ru
TRANSCRIPTION

, e r. FACTOR /' GENE
* Motifs: DNA biding sites (has a specific structure) -

- >

' B

* ChromVAR (Schep et. al., Nature Methods 2017) — —
* Motif enrichment of each cell
* Motif matching matrix W: motif by peak matrix ( jjfpndﬂ::xf___.r

e for a list of motifs, calculate the frequency of
each motif within any peak regions

_ MxX' -MxE'

X':l'\" :
) p l',= : -t X z,\“)
MXE z.{'_]zt’_].\'z“.i =1 ’

e Can adjust for other peaks that contain similar motifs (background peaks) to adjust for
local bias — reduce the motif enrichment if
e Transcriptional factor activity of each cell
* For each TF, select a representative subset of motifs
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