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Outline

• scATAC-seq technology

• scATAC-seq preprocessing and quality control
• Peak calling
• Filtering low-quality cells
• Doublet detection
• Barcode multiplets

• Dimension reduction and feature transformations



Epigenomics and scATAC-seq
• DNA is packaged inside the nucleus

• Make DNA fit into the nucleus and stable
• Controls the activity of DNA: inactive if tightly packed

• The basic unit is called nucleosome: DNA wrapped around 8 
histone proteins

• Epigenomics:
• Modification of DNA / histones that does not alternative 

the 
DNA sequence

• Understand regulation of gene expression

• Single-cell ATAC-seq: 
• measure the open regions of DNA 

(chromatin accessibility)
• Understand how nucleosome positioning regulates

gene expression (transcriptional activation)

nucleosome

https://courses.lumenlearning.com/wm-
biology1/chapter/reading-chromosome-structure/



How is chromatin accessibility influenced?

https://www.sc-best-practices.org/chromatin_accessibility/introduction.html

• Transcriptional factor 
(TF):
• proteins that help 

turn specific genes 
"on" or "off" by 
binding to nearby 
DNA

• Promotor: a region of 
DNA upstream of a gene 
where relevant proteins 
such as TF bind to initiate 
transcription

• Enhancer: region 
of DNA that can be 
bound by proteins to 
increase likelihood of 
transcription



ATAC-seq for measuring chromatin accessiblity
• ATAC-seq (Assay for Transposase-Accessible Chromatin with high-

throughput sequencing) (Buenrostro et. al. Nature Methods 2015)
• chromatin is fragmented and simultaneously tagmented 

with sequencing adapters using the Tn5 transposase
• NFR fragments:  represent the open chromatin
     nucleosome-bound fragments: reflect nucleosome position

• Fragment length distribution

• Compared with other techniques, ATAC-seq requires few 
starting materials and less preparation time

https://www.genewiz.com/Public/Services
/Next-Generation-
Sequencing/Epigenomics/ATAC-Seq/



scATAC-seq by 10x Genomics (Satpathy et. al., 2019)

• Nuclei are transposed (chromatin fragmented and simultaneously tagmented) in bulk before 
isolated in a suspension 

• Transposed DNA are amplified inside each nuclei first before PCR amplification

No UMI:
• One position on one chromatin can only 

be on/off 
• One nuclei only have two copies of one 

chromosome
• Can easily remove duplicated fragments



How does scATAC-seq data look like?

• scATAC-seq preprocessing steps (Chen et. al. 
Genome Biology 2019)

• scATAC-seq peak by cell matrix is extremely 
sparse (much sparser than scRNA-seq)
• DNA only have two copies per cell
• 1-10% detection rate of accessible peaks
• 10-20 times feature size than scRNA-seq

• Can have more than 2 fragments in a peak 
before amplification



Peak calling for scATAC-seq

• Peak calling methods have been developed for a long time for other types of 
epigenetic data 

• Various ways to detect peaks
• Detect peaks based on a reference bulk ATAC-seq data
• Detect peaks based on pseudo-bulk ATAC-seq data (ignore cell barcode to create 

a “bulk” dataset)
• Perform clustering first and perform calling for each cluster of cells

(SnapATAC, Fang et. al., Nature communications, 2021)
• Aim to identify small peaks that only appear in small cell types
• To perform clustering without peaks

• Create cell-by-bin count matrix
• Segment the genome into bins (5kb size by default)
• Count the number of read in each bin and binarize the matrix

• One common method to detect peaks in MACS2 



MACS2 (Zhang et. al. Genome Biology, 2008)

• Can work with both single-end reads and paired-end reads
• scATAC-seq is paired-end, call peaks only use NFR fragments (fragment 

length less than 100bp)
• Or use all reads and treat them as single-end

• Need to recenter the reads

• Core steps when analyzing scATAC-seq 
• Remove duplicate reads: reads at the exact same location
• Recenter the reads setting 𝑑 = 200	
• Peak detection

• Slide 2𝑑 window across the genome to find peaks
• Given any window of the genome, assume number of reads follow a 

Poisson distribution with mean 𝜆!"#$! if there is no peak (null)
𝜆!"#$! = max(𝜆%&, 𝜆'(, 𝜆)*()

• Compute a p-value for each window, selection all windows with small 
p-values (10+')

• Merge nearby peak regions and identify peak center as the “summit” 
– extend each read from its center by 𝑑 so that reads can pile up 



Quality control for scATAC-seq
• Detect low-quality cells

• General metrics: total fragment counts, number of features per 
cell

• Transcription starting site (TSS) enrichment
• scATAC-seq fragments should be enriched near the TSS

• Select a random subset of TSS
• For each TSS, compare number of overlapping 

fragments (+- 2000bp window) with nearby windows to 
calculate an enrichment score

• Doublet detection
• Much more challenging as the scATAC-seq has much higher 

sparsity
• If we use similar idea as in scRNA-seq, need to aggregate 

correlated features (a suggestion of number of features: 25, 
https://www.sc-best-practices.org/chromatin_accessibility/quality_control.html)

• A different idea: At most two fragments detected per location in 
a single cell

https://www.sc-best-practices.org/chromatin_accessibility/quality_control.html


AMULET (Thibodeau et. al., Genome Biology 2021)

• Requires a relatively large 
library size

• Can identify homotypic 
doublets



Barcode multiplets (Lareau et. al., Nature Communications 2019)

• Though the bead softgel follows super Poisson 
distribution in 10X genomics, there can still be barcode 
multiplets 
• About 5% barcode multiplets in 10X scATAC-seq (80% 

single-bead droplets)
• Barcode multiplets in scRNA-seq can be challenging to 

detect 

• Detect barcode multiplets in scATAC-seq 
• Based on molecular diversity of Tn5 insertion sites 

across genome



scATAC-seq count matrix (Martens et. al. Nature Methods 2024)

• Peak * cell count matrix
• Count number of reads or 

number of fragments that 
overlap with peak region

• Should count number of 
fragments to avoid bias

• For a specific region, number of 
fragments follow Poisson 
distribution across cells

• Binarize the peak * cell matrix:
• Entry = 1 if there are any 

fragments detected overlap with 
the peak region

• Binarization is shown to hide 
quantitative information and not 
helpful



• Normalize by total number of fragments per cell 

• TF-IDF matrix transformation (Cusanovich et. al., Cell, 2018)
• Normalize by gene and cell at the same time
• Term Frequency (TF)  - Inverse Document Frequency (IDF)
• TF: total fragment normalization per cell

• 𝐹,: total number of fragments in cell 𝑗
• IDF: log(1 + 𝑁/𝑁-) 𝑁- total counts per peak across all cells

• Can also directly use 𝑁/𝑁- as IDF (Stuart et. al., Nature Methods 2021)

• TF-IDF
• Can take log transformation if needed

• SVD after TF-IDF: latent semantic analysis

scATAC-seq normalization



• Core steps:
• Binarize the count matrix
• Topic modeling using Latent Dirichlet Allocation (LDA, Blei et. al., JMLR 2003)

• Generative process

• Each position in a document independently choose a topic 
• Each topic has a topic-specific Multinomial distribution of words

• Solve the model: 
Gibbs sampling / variational Bayes / 
Expectation-propagation

cisTopic (Gonzalez-Blas et. al., Nature Methods, 2019)



• Core steps:
• Binarize the count matrix
• Topic modeling using Latent Dirichlet Allocation (LDA, Blei et. al., JMLR 2003)

• Treat each cell as a document and each region (peak) as a word
• Use Gibbs sampler to iteratively optimize two probability distributions:

• Region-topic distribution: the probability of a region belonging to a topic
• Topic-cell distribution: the contribution of a topic within a cell

• Determine the hyperparameters
• Number of topics 𝐾: fit a model with different 𝐾, find the smallest 𝐾 that stabilize the 

log-likelihood
• Dirichlet distribution hyperparameters

cisTopic (Gonzalez-Blas et. al., Nature Methods, 2019)



peakVI (Gonzalez-Blas et. al., Nature Methods, 2019)

• Adaptation of scVI to 
correct batch effects, 
denoising, and perform 
dimension reduction

• Main change: 
distributional 
assumption on count 
data



peakVI (Gonzalez-Blas et. al., Nature Methods, 2019)

• (Martens et. al. Nature Methods 2024) finds that using the Poisson model with 
counts without binarization and use observed region-specific and cell-specific 
factors instead of estimated factors can improve performance of peakVI 



Gene activity score

• Transfer the peak * cell matrix to gene * cell matrix
• Aggregate peaks around promoter region of a gene

• Cicero (Pliner et. al. Molecular Cell, 2018)
• Overall measure linked to each gene 𝑘 using peaks that 

belong to proximal or distal sites of gene TSS

• 𝑢./ peak-peak co-accessibility score

• Signac (Stuart et. al. Nature Methods, 2018)
• Count number of fragments overlapping the gene body and a 

2-kb upstream region for each gene in each cell

• Apply scRNA-seq methods on gene activity score matrix



Transcriptional factor activity matrix

• Motifs: DNA biding sites (has a specific structure)

• ChromVAR (Schep et. al., Nature Methods 2017)
• Motif enrichment of each cell 

• Motif matching matrix 𝑊: motif by peak matrix
• for a list of motifs, calculate the frequency of 

each motif within any peak regions 

• Can adjust for other peaks that contain similar motifs (background peaks) to adjust for 
local bias – reduce the motif enrichment if 

• Transcriptional factor activity of each cell
• For each TF, select a representative subset of motifs 
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