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Outline

• Spatial transcriptomics
• Histology
• Image-based and sequencing-based technologies

• Spatial domain detection
• Spatial statistics-based methods and GNN methods
• Integration of multiple slices



What is spatial transcriptomics?
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• Spatial transcriptomics measure both transcriptomics (gene expression levels across the whole 
genome) and spatial information
• Many genes need to be properly regulated in space for the system to function
• Understand spatial patterns of gene expressions



Histology
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• Histology: spatial transcriptomics data often have an associated histology image
• Microscopic anatomy of biological tissues
• Staining provides colors: 

• H&E stain: stains the nuclei purplish-blue and cytoplasm and other tissues in various 
stains of pink

• Can be used to diagnose cancer and other diseases

https://www.leicabiosystems.com/us/knowledge-
pathway/he-staining-overview-a-guide-to-best-practices/



Why spatial transcriptomics?

5(Longo et. al., Nature Reviews Genetics 2021)



RNA-Fluorescence in situ hybridization (FISH)
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• FISH is a technique using fluorescently labeled probe to detect specific DNA/RNA sequence
• Keep the location of the cells but can only detected a limited number of genes

https://thenode.biologists.com/fishing-fish-2/resources/



Two types of spatial transcriptomics technologies
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• Sequencing based spatial transcriptomics
• Use scRNA-seq techniques to measure transcriptomics profiles for each spatial spot

• Image-based spatial transcriptomics
• Use FISH techniques, increase the number of genes detected to a few hundreds

(Atta and Fan, Nature Comm, 2021)



MERFISH (Chen et. al., Science 2015)
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• Multiplex error-robust FISH that can measure 100-1000 genes
• smFISH: 𝐾 roundà measure 𝐾 gene
• Combinatorial barcoding of the genes: 𝐾 round à measure 2! − 1 genes at most

• Problem: calling rate also has an exponential decay (black dots)
• Assume 1 -> 0 error 𝑝", 0 -> 1 error 𝑝#, the code has 𝑚 1s, recall rate will be 

(1 − 𝑝")$(1 − 𝑝#)!%$ 



MERFISH (Chen et. al., Science 2015)
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Solution: error-robust coding
• Encode each gene so that the barcode Hamming distance is at least 4
• Each gene barcode has exactly 4 1s to increase recall rate (as 𝑝" > 𝑝#)



10X Visium
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• Resolution: 55 µm spot (Stahl et. al., Science 2016)
• Typical human cell dimension: 10-15 µm in diameters, depend on the cell type 

• Visium HD: 3 µm resolution, binned to 8 * 8 µm bins as a starting point
• Much more expensive



Slide-seq (Rodrigques et. al. Science 2019) & Slide-seqV2 (Stickels et. al., 
Nature Biotech 2021)
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• Slide-seqV2 keeps the 10 µm resolution but has much higher mRNA capture efficiency



Data from spatial transcriptomics
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https://qcb.ucla.edu/collaboratory/workshops/w31-spatial-transcriptomics/

Common types of downstream analyses:
• Spatial domain detection
• Deconvolution and cell type annotation
• Imputation with external data
• Finding spatially variable genes
• Understand cell-cell interactions

• Detecting cell boundaries can be a challenge 
(Prabhakaran, Bioinformatics advances, 2022)



Spatial domain detection 
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• How to perform clustering of the cells/spots taking spatial coordinates into consideration?

https://www.sc-best-practices.org/spatial/domains.html



Giotto (Dries et. al., Genome Biology, 2021) 
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• Spatial domain detection in Giotto uses hidden-Markov random field (HMRF)
• Clustering without using spatial information seems not too bad

osmFISH mouse SS cortex dataVisium Brain data



Giotto (Dries et. al., Genome Biology, 2021) 
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• hidden-Markov random field (HMRF) -> two-dimensional hidden Markov model
• Key assumptions (Zhu et. al., Nature Biotech, 2018):

• For a spot/cell 𝑖, gene expressions given the hidden state 𝑐& are independent across 𝑖

• The hidden state 𝑐& depends on hidden states of spatially nearby points (Potts model)

• Assign spatial domains / clusters based on the posterior probability of the hidden states



Giotto (Dries et. al., Genome Biology, 2021) 
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• Performance of HMRF models (SC-MEB, Yang et. al. Briefings in Bioinformatics 2021)



A simple weighted graph method
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• Illustrated using Squidpy (Palla et. al., Nature Methods 2022): 
https://www.sc-best-practices.org/spatial/domains.html#id555 

• Idea: spatial smoothing in clustering
• Compute cell-cell connectivity graph using both graphs:

• Nearest neighbor graph based on gene expression PCA
• Nearest neighbor graph based on spatial coordinates
• Weighted average to create a new graph for clustering

https://www.sc-best-practices.org/spatial/domains.html


SpaGCN (Hu et. al., Nature Methods, 2021) 
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• Use both histology image and spatial locations to build connectivity graph between 
two spots
• Convert histology RGB values to a single value and 

treat it as a 3rd dimension when calculating cell-cell 
distances 

• Compute cell-cell similarity matrix 𝐴
• Edge weights 



SpaGCN (Hu et. al., Nature Methods, 2021) 
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• Use graph convolutional layer to perform smoothing
• Use the top PCs as input 𝑋

• Loss function: measuring the clustering 
performance
• Perform Louvain clustering on based on the 

output of the graph convolutional layer 
• Calculate “assignment probability” assuming 

t-distributions

• Minimize the loss to encourage 𝑞&' to be 
close to 0 or 1



GraphST (Long et. al. Nature Comm, 2023)
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• Main idea: GNN + self-supervised contrastive learning
• Build KNN graph using spatial locations and obtain adjacency matrix 𝐴
• Use graph convolutional network to build the encoder

• Contrastive learning : generate corrupted graph by randomly permute cell labels
• Make positive pairs more similar to each other and contrast negative pairs

• Perform standard clustering on reconstructed gene expression matrix + surrounding refinement



GraphST (Long et. al. Nature Comm, 2023)
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Integration of spatial transcriptomics data
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• Tissue sample can be dissected into multiple sections 
• Serial tissue slices can be used to infer 3D information

• Extract 3D spatial domains

• Challenge: placement and orientation of the tissue 
on the array can be arbitrary



PASTE (Zeira et. al., Nature Methods 2022)
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• Pairwise alignment of ST slices
• Convert spatial coordinate matrix to spatial distance matrix between any two 

spots on the same slice 𝑠
• Define alignment matrix
• Minimize the transport cost

• Computational cost: 𝑂(𝑛#𝑛( + 𝑛𝑛′#)	

• Reconstruct stacked 3D spatial representation
• Obtain pairwise alignment matrix between adjacent slices 
• Estimate a shared rotation matrix and translation vector across slices

• Construct a center slice to represent all slices if the slices are similar to each other



PASTE (Zeira et. al., Nature Methods 2022)
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Integrative domain detection using GraphST
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• Align the spatial locations
• Horizontal integration

• Align the two histological image to ensure slices are adjacent in space
• Vertical integration

• Use PASTE to align the coordinates

• Joint neighborhood construction
• Construct neighborhood graph including both intra-slice and inter-slice adjacent 

spots
• Train all slices together

• Implicitly removes batch effects



Integrative domain detection using GraphST
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